


Recursively find the sum of the digits of n^x, where n and x are both very large, implemented using C++
We are given positive integer variables "num" and "x". The task is to recursively calculate num^x and then add the digits of the resulting numbers until it reaches single digits, the resulting single digits will be given as output.
Let us look at various input and output scenarios for this -
Input − int num = 2345, int x = 3
Output − The recursive sum^x of numbers in n, where n and x are very large: 8
Explanation− We are given the positive integer values num and x, with the value 2345, The power is 3. First, calculate 2345^3 which is 12,895,213,625. Now, let's add these numbers together, which is 1 2 8 9 5 2 1 3 6 2 5, which is 44. Now we're going to add 4 4, which is eight. Since we have reached single digits, the output is 8.
Input− int num = 3, int x = 3
Output − The recursive sum of numbers in n^x, where n and x is very large: 9
Explanation− We are given positive integer values num and x with value 3 and power 3. First calculate 3^3, which is 9. Since we already got the single digits, the output is 9 and no further calculations are needed.
The method used in the program below is as follows
Input the integer variables num and x and pass the data to the function Recursive_Digit(num, x) for further processing.
Declare the variable 'total' as long and set it to call the function total_digits( num), this function returns the numeric sum of the numbers passed as arguments.
Declare the variable as temp of long type and set it using % power of 6
-
Check IF Total = 3 OR Total = 6 AND power > 1, then returns 9.
ELSE IF, power = 1, then returns Total.
li>ELSE IF, power = 0 then returns 1.
ELSE IF, temp - 0 and then return to call total_digits((long)pow(total, 6))
Otherwise, return total_digits( (long)pow(total, temp)).
Internal function long Total_digits(long num)
Checks IF num = 0, then returns 0. Check IF, num % 9 = 0 and return 9.
Otherwise, return num % 9
#include <bits/stdc++.h>
using namespace std;
long total_digits(long num){
if(num == 0){
return 0;
}
if(num % 9 == 0){
return 9;
}
else{
return num % 9;
}
}
long Recursive_Digit(long num, long power){
long total = total_digits(num);
long temp = power % 6;
if((total == 3 || total == 6) & power > 1){
return 9;
}
else if (power == 1){
return total;
}
else if (power == 0){
return 1;
}
else if (temp == 0){
return total_digits((long)pow(total, 6));
}
else{
return total_digits((long)pow(total, temp));
}
}
int main(){
int num = 2345;
int x = 98754;
cout<<"Recursive sum of digit in n^x, where n and x are very large are: "<<Recursive_Digit(num, x);
return 0;
}
H2>OutputIf we run the above code it will generate the following output
Recursive sum of digit in n^x, where n and x are very large are: 1
The above is the detailed content of Recursively find the sum of the digits of n^x, where n and x are both very large, implemented using C++. For more information, please follow other related articles on the PHP Chinese website!

XML is used in C because it provides a convenient way to structure data, especially in configuration files, data storage and network communications. 1) Select the appropriate library, such as TinyXML, pugixml, RapidXML, and decide according to project needs. 2) Understand two ways of XML parsing and generation: DOM is suitable for frequent access and modification, and SAX is suitable for large files or streaming data. 3) When optimizing performance, TinyXML is suitable for small files, pugixml performs well in memory and speed, and RapidXML is excellent in processing large files.

The main differences between C# and C are memory management, polymorphism implementation and performance optimization. 1) C# uses a garbage collector to automatically manage memory, while C needs to be managed manually. 2) C# realizes polymorphism through interfaces and virtual methods, and C uses virtual functions and pure virtual functions. 3) The performance optimization of C# depends on structure and parallel programming, while C is implemented through inline functions and multithreading.

The DOM and SAX methods can be used to parse XML data in C. 1) DOM parsing loads XML into memory, suitable for small files, but may take up a lot of memory. 2) SAX parsing is event-driven and is suitable for large files, but cannot be accessed randomly. Choosing the right method and optimizing the code can improve efficiency.

C is widely used in the fields of game development, embedded systems, financial transactions and scientific computing, due to its high performance and flexibility. 1) In game development, C is used for efficient graphics rendering and real-time computing. 2) In embedded systems, C's memory management and hardware control capabilities make it the first choice. 3) In the field of financial transactions, C's high performance meets the needs of real-time computing. 4) In scientific computing, C's efficient algorithm implementation and data processing capabilities are fully reflected.

C is not dead, but has flourished in many key areas: 1) game development, 2) system programming, 3) high-performance computing, 4) browsers and network applications, C is still the mainstream choice, showing its strong vitality and application scenarios.

The main differences between C# and C are syntax, memory management and performance: 1) C# syntax is modern, supports lambda and LINQ, and C retains C features and supports templates. 2) C# automatically manages memory, C needs to be managed manually. 3) C performance is better than C#, but C# performance is also being optimized.

You can use the TinyXML, Pugixml, or libxml2 libraries to process XML data in C. 1) Parse XML files: Use DOM or SAX methods, DOM is suitable for small files, and SAX is suitable for large files. 2) Generate XML file: convert the data structure into XML format and write to the file. Through these steps, XML data can be effectively managed and manipulated.

Working with XML data structures in C can use the TinyXML or pugixml library. 1) Use the pugixml library to parse and generate XML files. 2) Handle complex nested XML elements, such as book information. 3) Optimize XML processing code, and it is recommended to use efficient libraries and streaming parsing. Through these steps, XML data can be processed efficiently.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

SublimeText3 Linux new version
SublimeText3 Linux latest version

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

SublimeText3 English version
Recommended: Win version, supports code prompts!

Dreamweaver Mac version
Visual web development tools
