The meaning of image classification is to extract as much information as possible from the image. For example, when you upload an image to Google Photos, it extracts information from the image and suggests a location based on that information.
We can use OpenCV to detect every tiny information in the image and predict the image.
Training and testing a model from scratch using JavaScript requires a lot of effort and requires the right dataset containing different images. So, in this tutorial, we will use the pre-trained model of ml5.js to classify images.
ml5.js library contains various pre-trained models to make the developer's life easier. Additionally, it uses the browser's GPU to perform mathematical operations, making it more efficient.
grammar
Users can use the ml5.js library to classify images according to the following syntax.
image_classifier.predict(image, function (err, outputs) { if (err) { return alert(err); } else { output.innerText = outputs[0].label; } });
In the above syntax, "image_classifier" is a pre-trained image classification model imported from the ml5.js library. We call the "predict" method by passing the image as the first parameter and the callback function as the second parameter. In the callback function we get the output or error.
step
Step 1 - Use CDN to add the "ml5.js" library in the web page code.
Step 2 - Add input to upload files and categorize buttons.
Step 3 - In JavaScript, access the required HTML elements and "MobileNet" model from ml5.js. In addition, the modelLoad() function is executed after the model is loaded.
Step 4 - After that, whenever the user uploads an image, the event is triggered and the image is read in the callback function. Also, display the image on the screen.
Step 5 - When the user presses the classify image button, use the image classifier's prediction method to predict information about the image.
Example 1
In the example below, we add the "ml5.js" library to the
section via CDN. After that, whenever the user uploads an image, we read it and display it on the screen. Next, we use a prediction method to extract features from the image when the user presses the classification button. In the output, the user can display information about the image below the image.<html> <head> <script src="https://unpkg.com/ml5@latest/dist/ml5.min.js"></script> </head> <body> <h2 id="Creating-the-i-Image-classifier-i-using-the-ml-js-in-JavaScript">Creating the <i> Image classifier </i> using the ml5.js in JavaScript.</h2> <h4 id="Wait-until-model-loads"> Wait until model loads. </h4> <input type = "file" name = "Image" id = "upload_image" accept = "jpg,jpeg,png"> <br> <br> <img src="/static/imghwm/default1.png" data-src="https://unpkg.com/ml5@latest/dist/ml5.min.js" class="lazy" src = "" class = "image" id = "show_image" width = "300px" height = "300px" alt="Image classification using JavaScript" > <br> <button class = "button" id = "triggerClassify"> Classify the image </button> <br> <h2 id = "output"> </h2> <script> window.onload = function () { // access all HTML elements and image classifier const image_classifier = ml5.imageClassifier("MobileNet", modelLoaded); const triggerClassify = document.getElementById("triggerClassify"); const upload_image = document.getElementById("upload_image"); const show_image = document.getElementById("show_image"); const output = document.getElementById("output"); // when the model is loaded, show the message function modelLoaded() { let content = document.getElementById("content"); content.innerText = "Model is loaded! Now, test it by uploading the image."; } // When the user uploads the image, show it on the screen upload_image.onchange = function () { if (this.files && this.files[0]) { // using FileReader to read the image var reader = new FileReader(); reader.onload = function (e) { show_image.src = e.target.result; }; reader.readAsDataURL(this.files[0]); } }; // classify the image when the user clicks the button triggerClassify.onclick = function (e) { // predict the image using the model image_classifier.predict(show_image, function (err, outputs) { if (err) { return err; } else { // show the output output.innerText = outputs[0].label; } }); }; } </script> </body> </html>
Example
In the example below, the user can paste an image link into the input field. After that, whenever they press the get image button, it will display the image on the web page. Next, when the user clicks the Classify Images button, they can see the output containing the image information on the screen.
<html> <head> <script></script> </head> <body> <h2 id="Creating-the-i-Image-classifier-i-using-the-ml-js-in-JavaScript">Creating the <i> Image classifier </i> using the ml5.js in JavaScript.</h2> <h4 id="Wait-until-model-loads"> Wait until model loads. </h4> <input type = "text" id = "link_input" placeholder = "Paste image link here"> <button id = "fetch_image"> Fetch Image </button> <br> <br> <img src = "" id = "show_image" width = "300px" height = "300px" crossorigin = "anonymous" alt="Image classification using JavaScript" > <img src = "" class = "image" id = "imageView" alt="Image classification using JavaScript" > <br> <button class = "button" id = "triggerClassify"> Classify the image </button> <br> <h2 id = "output"> </h2> <script> window.onload = function () { // access all HTML elements and image classifier const image_classifier = ml5.imageClassifier("MobileNet", modelLoaded); const triggerClassify = document.getElementById("triggerClassify"); let link_input = document.getElementById("link_input"); const show_image = document.getElementById("show_image"); const output = document.getElementById("output"); // when the model is loaded, show the message function modelLoaded() { let content = document.getElementById("content"); content.innerText = "Model is loaded! Now, test it by uploading the image."; } fetch_image.onclick = function (e) { let link = link_input.value; console.log(link); if (link != null && link != undefined) { show_image.src = link; } }; triggerClassify.onclick = function (e) { image_classifier.predict(show_image, function (err, outputs) { if (err) { console.error(err); } else { output.innerText = outputs[0].label; } }); }; } </script> </body> </html>
Users learned to classify images using a pre-trained model in JavaScript. We use “ml5.js” library to extract image features. We can classify images using real-life image classification. Additionally, there are many other use cases for image classification.
The above is the detailed content of Image classification using JavaScript. For more information, please follow other related articles on the PHP Chinese website!

Python and JavaScript have their own advantages and disadvantages in terms of community, libraries and resources. 1) The Python community is friendly and suitable for beginners, but the front-end development resources are not as rich as JavaScript. 2) Python is powerful in data science and machine learning libraries, while JavaScript is better in front-end development libraries and frameworks. 3) Both have rich learning resources, but Python is suitable for starting with official documents, while JavaScript is better with MDNWebDocs. The choice should be based on project needs and personal interests.

The shift from C/C to JavaScript requires adapting to dynamic typing, garbage collection and asynchronous programming. 1) C/C is a statically typed language that requires manual memory management, while JavaScript is dynamically typed and garbage collection is automatically processed. 2) C/C needs to be compiled into machine code, while JavaScript is an interpreted language. 3) JavaScript introduces concepts such as closures, prototype chains and Promise, which enhances flexibility and asynchronous programming capabilities.

Different JavaScript engines have different effects when parsing and executing JavaScript code, because the implementation principles and optimization strategies of each engine differ. 1. Lexical analysis: convert source code into lexical unit. 2. Grammar analysis: Generate an abstract syntax tree. 3. Optimization and compilation: Generate machine code through the JIT compiler. 4. Execute: Run the machine code. V8 engine optimizes through instant compilation and hidden class, SpiderMonkey uses a type inference system, resulting in different performance performance on the same code.

JavaScript's applications in the real world include server-side programming, mobile application development and Internet of Things control: 1. Server-side programming is realized through Node.js, suitable for high concurrent request processing. 2. Mobile application development is carried out through ReactNative and supports cross-platform deployment. 3. Used for IoT device control through Johnny-Five library, suitable for hardware interaction.

I built a functional multi-tenant SaaS application (an EdTech app) with your everyday tech tool and you can do the same. First, what’s a multi-tenant SaaS application? Multi-tenant SaaS applications let you serve multiple customers from a sing

This article demonstrates frontend integration with a backend secured by Permit, building a functional EdTech SaaS application using Next.js. The frontend fetches user permissions to control UI visibility and ensures API requests adhere to role-base

JavaScript is the core language of modern web development and is widely used for its diversity and flexibility. 1) Front-end development: build dynamic web pages and single-page applications through DOM operations and modern frameworks (such as React, Vue.js, Angular). 2) Server-side development: Node.js uses a non-blocking I/O model to handle high concurrency and real-time applications. 3) Mobile and desktop application development: cross-platform development is realized through ReactNative and Electron to improve development efficiency.

The latest trends in JavaScript include the rise of TypeScript, the popularity of modern frameworks and libraries, and the application of WebAssembly. Future prospects cover more powerful type systems, the development of server-side JavaScript, the expansion of artificial intelligence and machine learning, and the potential of IoT and edge computing.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SublimeText3 Chinese version
Chinese version, very easy to use

SublimeText3 Mac version
God-level code editing software (SublimeText3)

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

Dreamweaver Mac version
Visual web development tools

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool