


Find the index of the closest non-overlapping interval to the right of each given N interval
A standard interval representation usually consists of a set of paired starting and ending points. Finding the nearest non-overlapping interval to the right of each specified interval constitutes our current dilemma. This task is of huge importance in many different applications, such as resource allocation and scheduling, since it involves identifying the next interval that does not intersect or contain the current interval.
grammar
To help understand the code demonstration that is about to be shown, let's first look at the syntax that will be used, and then dive into the algorithm.
// Define the Interval structure struct Interval { int start; int end; }; // Function to find the index of closest non-overlapping interval vector<int> findClosestNonOverlappingInterval(const vector<interval>& intervals) { // Implementation goes here } </interval></int>
algorithm
Solving this problem requires an organized approach, centered on iterating intervals in reverse order while maintaining an index stack pointing to their nearest non-overlapping partners. Here are the brief but effective steps of how our proposed algorithm solves this problem -
Create an empty stack to store the indices of non-overlapping intervals.
Initialize an index vector with a size equal to the number of intervals, padded with -1 to indicate that no non-overlapping intervals have been found.
Traverse the intervals from right to left.
-
If the stack is non-empty and there is a cross-sectional area between the current interval and the top interval, proceed to eliminate (pop) that top-most index from the stack.
李> To ensure accurate representation, if the stack is empty, the index position is assigned -1 in the vector representing the current interval. This means that there are no non-overlapping intervals on the right.
It is strongly recommended to ensure that the stack we specify has elements before attempting this task; otherwise an error will occur. After confirming that we have one or more elements on said structure, we can do this by having the vector of the current interval set its index value to the same as the corresponding element at the topmost position on the structure we identified and its corresponding index information. Include it in the same structure to perform operations.
Repeat steps 3-7 until all intervals have been processed.
Return the index vector.
method
To resolve this dilemma, we will look at two different strategies.
Method 1: Brute force cracking
One possible strategy to solve this problem is to use violence. Essentially, this requires examining each individual interval and then comparing it to all intervals to the right of it until no intersection option becomes obvious. However. It is worth noting that utilizing this method results in a time complexity of O(N^2). Where N represents the total number of intervals participating in the inspection process.
grammar
vector<int> findClosestNonOverlappingInterval(const vector<Interval>& intervals) { vector<int> result(intervals.size(), -1); for (int i = 0; i < intervals.size(); i++) { for (int j = i + 1; j < intervals.size(); j++) { if (intervals[i].end < intervals[j].start) { result[i] = j; break; } } } return result; }The Chinese translation of
Example
is:Example
#include#include using namespace std; // Define the Interval structure struct Interval { int start; int end; }; vector<int> findClosestNonOverlappingInterval(const vector<Interval>& intervals) { vector<int> result(intervals.size(), -1); for (int i = 0; i < intervals.size(); i++) { for (int j = i + 1; j < intervals.size(); j++) { if (intervals[i].end < intervals[j].start) { result[i] = j; break; } } } return result; } int main() { // Define intervals vector intervals = {{1, 3}, {2, 4}, {5, 7}, {6, 9}, {8, 10}}; // Find the index of closest non-overlapping interval for each interval vector closestIndices = findClosestNonOverlappingInterval(intervals); // Print the results for (int i = 0; i < intervals.size(); i++) { cout << "Interval [" << intervals[i].start << ", " << intervals[i].end << "] "; if (closestIndices[i] != -1) { cout << "has closest non-overlapping interval at index " << closestIndices[i] << endl; } else { cout << "has no non-overlapping interval to the right" << endl; } } return 0; }
Output
Interval [1, 3] has closest non-overlapping interval at index 2 Interval [2, 4] has closest non-overlapping interval at index 2 Interval [5, 7] has closest non-overlapping interval at index 4 Interval [6, 9] has no non-overlapping interval to the right Interval [8, 10] has no non-overlapping interval to the right
Method 2: Optimal solution
One very successful approach involves utilizing the stack as a means of monitoring recent non-overlapping intervals. The time complexity of this strategy is O(N) since our task only requires us to peruse the interval once.
grammar
vector<int> findClosestNonOverlappingInterval(const vector<Interval>& intervals) { vector<int> result(intervals.size(), -1); stack<int> st; for (int i = intervals.size() - 1; i >= 0; i--) { while (!st.empty() && intervals[i].end >= intervals[st.top()].start) { st.pop(); } if (!st.empty()) { result[i] = st.top(); } st.push(i); } return result; }The Chinese translation of
Example
is:Example
#include#include using namespace std; // Define the Interval structure struct Interval { int start; int end; }; vector<int> findClosestNonOverlappingInterval(const vector<Interval>& intervals) { vector<int> result(intervals.size(), -1); for (int i = 0; i < intervals.size(); i++) { for (int j = i + 1; j < intervals.size(); j++) { if (intervals[i].end < intervals[j].start) { result[i] = j; break; } } } return result; } int main() { // Define intervals vector intervals = {{1, 3}, {2, 4}, {5, 7}, {6, 9}, {8, 10}}; // Find the index of closest non-overlapping interval for each interval vector closestIndices = findClosestNonOverlappingInterval(intervals); // Print the results for (int i = 0; i < intervals.size(); i++) { cout << "Interval [" << intervals[i].start << ", " << intervals[i].end << "] "; if (closestIndices[i] != -1) { cout << "has closest non-overlapping interval at index " << closestIndices[i] << endl; } else { cout << "has no non-overlapping interval to the right" << endl; } } return 0; }
Output
Interval [1, 3] has closest non-overlapping interval at index 2 Interval [2, 4] has closest non-overlapping interval at index 2 Interval [5, 7] has closest non-overlapping interval at index 4 Interval [6, 9] has no non-overlapping interval to the right Interval [8, 10] has no non-overlapping interval to the right
in conclusion
Our exploration goal is to find the best position in C of the closest non-overlapping interval index to the right of each given interval. First, we discuss syntactic complexity in depth, while proposing an algorithm and proposing two potential solutions. As part of our investigation, we show how our brute force approach and stack-based optimization approach work with successfully tested executable code. This method allows you to easily identify the closest non-overlapping intervals for any particular set.
The above is the detailed content of Find the index of the closest non-overlapping interval to the right of each given N interval. For more information, please follow other related articles on the PHP Chinese website!

There are significant differences in how C# and C implement and features in object-oriented programming (OOP). 1) The class definition and syntax of C# are more concise and support advanced features such as LINQ. 2) C provides finer granular control, suitable for system programming and high performance needs. Both have their own advantages, and the choice should be based on the specific application scenario.

Converting from XML to C and performing data operations can be achieved through the following steps: 1) parsing XML files using tinyxml2 library, 2) mapping data into C's data structure, 3) using C standard library such as std::vector for data operations. Through these steps, data converted from XML can be processed and manipulated efficiently.

C# uses automatic garbage collection mechanism, while C uses manual memory management. 1. C#'s garbage collector automatically manages memory to reduce the risk of memory leakage, but may lead to performance degradation. 2.C provides flexible memory control, suitable for applications that require fine management, but should be handled with caution to avoid memory leakage.

C still has important relevance in modern programming. 1) High performance and direct hardware operation capabilities make it the first choice in the fields of game development, embedded systems and high-performance computing. 2) Rich programming paradigms and modern features such as smart pointers and template programming enhance its flexibility and efficiency. Although the learning curve is steep, its powerful capabilities make it still important in today's programming ecosystem.

C Learners and developers can get resources and support from StackOverflow, Reddit's r/cpp community, Coursera and edX courses, open source projects on GitHub, professional consulting services, and CppCon. 1. StackOverflow provides answers to technical questions; 2. Reddit's r/cpp community shares the latest news; 3. Coursera and edX provide formal C courses; 4. Open source projects on GitHub such as LLVM and Boost improve skills; 5. Professional consulting services such as JetBrains and Perforce provide technical support; 6. CppCon and other conferences help careers

C# is suitable for projects that require high development efficiency and cross-platform support, while C is suitable for applications that require high performance and underlying control. 1) C# simplifies development, provides garbage collection and rich class libraries, suitable for enterprise-level applications. 2)C allows direct memory operation, suitable for game development and high-performance computing.

C Reasons for continuous use include its high performance, wide application and evolving characteristics. 1) High-efficiency performance: C performs excellently in system programming and high-performance computing by directly manipulating memory and hardware. 2) Widely used: shine in the fields of game development, embedded systems, etc. 3) Continuous evolution: Since its release in 1983, C has continued to add new features to maintain its competitiveness.

The future development trends of C and XML are: 1) C will introduce new features such as modules, concepts and coroutines through the C 20 and C 23 standards to improve programming efficiency and security; 2) XML will continue to occupy an important position in data exchange and configuration files, but will face the challenges of JSON and YAML, and will develop in a more concise and easy-to-parse direction, such as the improvements of XMLSchema1.1 and XPath3.1.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SublimeText3 English version
Recommended: Win version, supports code prompts!

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function