In this problem, we need to find the longest non-increasing subsequence of a given string.
Non-increasing means that the characters are either the same or in descending order. Since binary strings only contain "0" and "1", the resulting string should either start with "1" and end with "0", or start and end with "0" or "1".
To solve this problem, we will count the prefix "1" and suffix "0" at each position of the string, and find the maximum sum of the prefix "1" and the suffix "0".
Problem Statement - We are given a binary string str. We need to find the longest non-increasing subsequence from the given string.
Example
Input – str = "010100"
Output – 4
illustrate
The longest non-increasing subsequence is "1100".
Input – str = "010110010"
Output – 6
illustrate
The longest non-increasing subsequence is "111000".
Input – str = ‘00000000’
Output – 8
illustrate
The longest non-increasing subsequence is '00000000', which is equal to the given string.
method 1
In this method we will store the count of prefix "1" and suffix "0" in the array for each index. After that, we get the values from the same index in both arrays, add them, and find the maximum sum.
algorithm
Step 1 - Define pre1s and suffix0s arrays to store prefix 1 and suffix 0. Additionally, initialize all array elements to 0.
Step 2 - Use a for loop to iterate through the string and calculate the prefix 1 for each index. If i > 0, then the value of the previous element is added to the current element.
Step 3 - If the current character is "1", add 1 to the current value of pre1s[i].
Step 4 - Now, count the suffix 0s in the given string. Traverse the string starting from the end.
Step 5 - If the value of "I" is not equal to "n – 1", get the value of the "I 1" element and add it to the current element.
Step 6 - If the current element is "0", add 1 to the current element.
Step 7 - Now, initialize the "res" variable with 0.
Step 8 - Iterate over "pre1s" and "suffix0s" using a loop.
Step 9 - Get the value from the i-th index in the "pre1s" and "suffix0s" arrays and add them together. Additionally, if "sum" is greater than the current value of the "res" variable, the "res" variable value is changed with the "sum" value.
Step 10 - Return the value of the "res" variable.
Example
For input '010100', the prefix array is [0, 1, 1, 2, 2, 2], and the suffix 0 array is [4, 3, 3, 2, 2, 1]. The sum array will be [4, 4, 4, 4, 4, 1] and the maximum value in the sum array is 4. Therefore, the answer will be 4.
#include <bits/stdc++.h> using namespace std; int getMaxLength(string str, int n){ // To store the prefix count of '1's and suffix count of '0's int pre1s[n] = {0}, suffix0s[n] = {0}; for (int i = 0; i < n; i++){ // get the prefix count of '1's if (i > 0){ pre1s[i] += pre1s[i - 1]; } // If the current character is '1', then update the pre1s array by adding 1; else, keep it as it is. if (str[i] == '1'){ pre1s[i] += 1; } } // get suffix count of '0's for (int i = n - 1; i >= 0; i--) { // add the suffix count of '0's if (i != n - 1) suffix0s[i] += suffix0s[i + 1]; // If the current character is '0', then update the suffix0s array by adding 1; else, keep it as it is. if (str[i] == '0') suffix0s[i] += 1; } // to store the final result value int res = 0; // iterate over the pre1s[] and suffix0s[] array and find the maximum value of pre1s[i] + suffix0s[i] for (int i = 0; i < n; i++){ res = max(res, pre1s[i] + suffix0s[i]); } // Return the result return res; } // Driver Code int main(){ string str = "010100"; int N = str.length(); cout << "The length of the longest non-increasing subsequence in the given binary string is - " << getMaxLength(str, N); return 0; }
Output
The length of the longest non-increasing subsequence in the given binary string is - 4
Time complexity - O(N), because we need to initialize the array with prefix 1 and suffix 0.
Space complexity - O(N) since we store prefix 1 and suffix 0 in array
Method 2
In this method, we will first count the total number of zeros. After that, we start iterating through the string, continuing to count "1"s, and if 0 is found, decrementing it by "0"s. Additionally, we add the counts of 0 and 1 in each iteration and find the maximum resulting value.
algorithm
Step 1 - Define the 'count1', 'count0' and 'res' variables and initialize them with 0 to store the count of 1, 0 and the final result respectively.
Step 2 - Count the total number of zeros by looping through the string and storing it in the "count0" variable.
Step 3 - Now, iterate over the string using a loop.
-
Step 4 - In the loop, if the current character is "1", increase the value of "count1" by 1, otherwise decrease the value of "count0" by 1.
Step 5 - Additionally, store the maximum value from "res" and "count0 count1" into the "res" variable.
Step 6 - When the loop terminates, return the value of the "res" variable.
Example
#include <bits/stdc++.h> using namespace std; int getMaxLength(string str, int n){ int count1 = 0, count0 = 0; int res = 0; // counting total zeros in the string for (int i = 0; i < n; i++){ if (str[i] == '0') count0++; } // counting 1s from left, subtracting zeros from total zeros and adding both counts. for (int i = 0; i < n; i++){ if (str[i] == '1') count1++; else count0--; res = max(res, count1 + count0); } return res; } int main(){ string str = "010110010"; int N = str.length(); cout << "The length of the longest non-increasing subsequence in the given binary string is - " << getMaxLength(str, N); return 0; }
Output
The length of the longest non-increasing subsequence in the given binary string is - 6
Time complexity - O(N), since we count the total number of zeros in the string and traverse the string to find the longest subsequence.
Space complexity - O(1)
in conclusion
Here, both methods have the same time complexity but different space complexity. The second method uses constant space when we optimize the code, but the first method uses dynamic space to store the total number of prefix 1 and suffix 0.
The above is the detailed content of Longest non-increasing subsequence in a binary string. For more information, please follow other related articles on the PHP Chinese website!

小红书作为一个生活方式分享平台,越来越多的用户选择在这里发布自己的视频内容,与其他用户分享生活点滴。许多用户在发布视频时,可能会遇到一个问题:如何查看自己或他人发布视频的时间?一、如何查看小红书发布视频的时间?1.查看自己发布视频的时间要查看自己发布视频的时间,首先要打开小红书应用并登录个人账号。在个人主页界面下方,会有一个标有“创作”字样的选项,点击进入后,会看到一个名为“视频”的栏目。在这里,你可以浏览所有已发布的视频列表,并轻松查阅发布时间。每个视频的右上角都有一个“查看详情”按钮,点击后

在这个问题中,我们需要找到给定字符串的最长非递增子序列。非递增的意思是字符要么相同,要么按降序排列。由于二进制字符串仅包含“0”和“1”,因此生成的字符串应以“1”开头并以“0”结尾,或者以“0”或“1”开头和结尾。为了解决这个问题,我们将统计字符串每个位置的前缀“1”和后缀“0”,并找到前缀“1”和后缀“0”的最大和。问题陈述-我们给出了二进制字符串str。我们需要从给定的字符串中找到最长的非递增子序列。示例Input–str="010100"Output–4说明最长的非递

pack()函数将数据打包到二进制字符串中。语法pack(format,args)参数格式-要使用的格式。以下是可能的值-a-NUL填充字符串A-空格填充字符串h-十六进制字符串,低半字节在前H-十六进制字符串,高半字节在前c-带符号字符C-无符号字符s-带符号短字符(始终为16位,机器字节顺序)S-无符号短整型(始终为16位,机器字节顺序)n-无符号短整型(始终为16位,大端字节顺序)v-无符号短整型(始终为16位,小端字节顺序)i-有符号整数(取决于机器的大小和字节顺序)I-无符号整数(取决

在给定的问题中,我们得到一个由0和1组成的字符串;我们需要找到以1开头的所有排列的总数。由于答案可能是一个巨大的数字,所以我们将其取模1000000007后输出。Input:str="10101001001"Output:210Input:str="101110011"Output:56我们将通过应用一些组合数学和建立一些公式来解决这个问题。解决方案的方法在这个方法中,我们将计算0和1的数量。现在假设n是我们字符串中出现的1的数量,m是我们字符串中出现的0

问题陈述我们有一个字符串str和一个二进制字符串B。两个字符串的长度都等于N。我们需要检查是否可以通过在字符串B中包含不相等字符的任意索引对上多次交换其字符,使字符串str成为回文字符串。示例示例输入str=‘AAS’B=‘101’输出‘YES’Explanation的中文翻译为:解释我们可以交换str[1]和str[2],因为B[1]和B[2]不相等。最终的字符串可以是'ASA'。输入str=‘AASS’B=‘1111’输出‘No’Explanation的中文翻译为:解释我们无法使字符串回文,

给定两个相同长度的二进制字符串str1和str2,我们必须通过从给定的相同长度的字符串中选择子字符串来最大化给定的函数值。给定的函数是这样的-fun(str1,str2)=(len(子字符串))/(2^xor(sub1,sub2))。这里,len(substring)是第一个子字符串的长度,而xor(sub1,sub2)是给定子字符串的异或,因为它们是二进制字符串,所以这是可能的。示例Input1:stringstr1=10110&stringstr2=11101Output:3说明我们

问题陈述我们给定了二进制字符串str,我们要求从字符串中删除最少的字符,以便我们可以将所有零放在1之前。示例输入str=‘00110100111’输出3说明这里,我们可以通过两种方式实现输出3。我们可以从字符串中删除arr[2]、arr[3]和arr[5]或arr[4]、arr[6]和arr[7]。输入str=‘001101011’输出2说明我们可以删除arr[4]和arr[6],将所有零放在1之前。输入str=‘000111’输出0说明在给定的字符串中,所有零都已放置在1之前,因此我们不需要从

这里我们将看到一个有趣的问题。假设给定一个值n。我们必须找到所有长度为n的字符串,其中没有连续的1。如果n=2,则数字为{00,01,10},所以输出为3。我们可以使用动态规划来解决它。假设我们有一个表'a'和'b'。其中arr[i]存储长度为i的二进制字符串的数量,其中没有连续的1,并以0结尾。类似地,b也是一样的,但以1结尾。我们可以在最后一个为0的情况下添加0或1,但如果最后一个为1,则只添加0。让我们看一下获取这个想法的算法。算法noConsecutiveOnes(n)-Begin&am


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Dreamweaver Mac version
Visual web development tools

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Atom editor mac version download
The most popular open source editor

Notepad++7.3.1
Easy-to-use and free code editor
