search
HomeBackend DevelopmentC++Express factorial n as the sum of consecutive numbers
Express factorial n as the sum of consecutive numbersSep 07, 2023 pm 02:29 PM
consecutive numbersSumFactorial representation

Express factorial n as the sum of consecutive numbers

We will discuss two methods to find out how to express the factorial of a number as the sum of consecutive numbers. The first method is the direct and simple method, while in the other method we use the concept of arithmetic progression to make it less complex in terms of time and space occupied.

Problem Statement

Given a number, we need to find a way to express the factorial of the number as the sum of consecutive natural numbers.

This involves two different functions -

  • Find the factorial of a number.

  • Find the number of ways in which a number can be represented as the sum of consecutive natural numbers.

Example 1

Given : Number = 3
Result: 1

As we all know, the factorial of 3 is 6, which can be written as 1 2 3, so our answer is: 1 way.

Example 2

Given: Number = 4
Result: 1

As we all know, the factorial of 4 is 24, which can be written as 7 8 9, so our answer is: 1 way.

method 1

This is a simple method, we first find the factorial of a number and then calculate the number of ways in which it can be expressed as the sum of consecutive natural numbers. The method is to express the factorial as a series of arithmetic length len 1 as -

Factorial of Number = p + (p+1) + (p+2) + … + (p+len) 
So, p = (Number- len*(len+1)/2)/(len+1) 
We will check for the values of len from 1 to len*(len+1)/2<Number

When we obtain len as a positive integer, we treat it as a solution.

Example

In the following example, we try to find the number of ways to express the factorial of a number as the sum of consecutive numbers.

#include <bits/stdc++.h>
using namespace std;

// code for obtaining number of possible solutions
long int Number_of_solutions(long int NUMBER){
   long int counter = 0;
   for (long int len = 1; len * (len + 1) < 2 * NUMBER; len++) {
      double p = (1.0 * NUMBER - (len * (len + 1)) / 2) / (len + 1);
      if (p - (int)p == 0.0)
      counter++;
   }
   return counter;
}

// main program goes here
int main(){
   long int NUMBER = 15;
   cout << "Number of ways to write 15 as a sum of consecutive numbers: ";
   cout << Number_of_solutions(NUMBER) << endl;
   NUMBER = 10;
   cout << "Number of ways to write 10 as a sum of consecutive numbers: ";
   cout << Number_of_solutions(NUMBER) << endl;
   return 0;
}

Output

When you run the above C program, it will produce the following output -

Number of ways to write 15 as a sum of consecutive numbers: 3 
Number of ways to write 10 as a sum of consecutive numbers: 1

Method 2: Optimization method

This is a better approach; the approach we saw above causes overflow.

The sum of len consecutive numbers starting from the number p can be written as -

sum = (p+1) + (p+2) + (p+3) … + (p+len) 
Hence, sum = (len*(len + 2*p + 1))/2

Because sum is also equal to Number!.

We can write

2*Number! = (len*(len + 2*p + 1))

Here, we will count all (len, (len 2*p 1)) pairs instead of counting all (len, p) pairs. This means we will compute all ordered pf (A, B) where AB=2*Number! And A

This means we are looking for odd divisors of 2*Number! This is also the odd divisor of Number!

To calculate the number of divisors! , we must calculate the powers of prime numbers in factorization, the number of divisors is (f1 1)*(f2 1)* … *(fn 1).

We will use Legendre's formula to calculate the maximum power of a prime number in the factorial of a number.

Example

The code for this approach is given below -

#include <bits/stdc++.h>
using namespace std;
#define maximum 5002
vector<int> v;
void sieve(){
   bool Is_the_number_prime[maximum];
   memset (Is_the_number_prime, true, sizeof(Is_the_number_prime) );
   for (int prime = 2; prime * prime < maximum; prime++) {
      if (Is_the_number_prime[prime] == true) {
         for (int iterator = prime * 2; iterator < maximum; iterator += prime)
         Is_the_number_prime[iterator] = false;
      }
   }
   for (int prime = 2; prime < maximum; prime++)
   if (Is_the_number_prime[prime])
   v.push_back(prime);
}
long long int calculate_largest_power(long long int a, long long int b){
   long long int c = 0;
   long long int x = b;
   while (a >= x) {
      c += (a / x);
      x *= b;
   }
   return c;
}
long long int modular_mult(long long int a,
long long int b,
long long int m){
   long long int result = 0;
   a = a % m;
   while (b > 0) {
      if (b % 2 == 1)
      result = (result + a) % m;
      a = (a * 2) % m;
      b /= 2;
   }
   return result % m;
}
long long int no_of_ways(long long int n,
long long int m){
   long long int answer = 1;
   for (int iterator = 1; iterator < v.size(); iterator++) {
      long long int powers = calculate_largest_power(n, v[iterator]);
      if (powers == 0)
      break;
      answer = modular_mult(answer, powers + 1, m)%m;
   }
   if (((answer - 1) % m) < 0)
   return (answer - 1 + m) ;
   else
   return (answer - 1) ;
}
int main(){
   sieve();
   long long int n = 4, m = 7;
   cout << "Number of solutions after performing modulo with 7 is " <<no_of_ways(n, m);
   return 0;
}

Output

When the above C program is run, it will produce the following output -

Number of solutions after performing modulo with 7 is 1.

in conclusion

In this article, we discussed two different ways to find a number, expressing the factorial of a number as the sum of consecutive natural numbers.

The above is the detailed content of Express factorial n as the sum of consecutive numbers. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:tutorialspoint. If there is any infringement, please contact admin@php.cn delete
在Python中的绝对元组求和在Python中的绝对元组求和Sep 12, 2023 pm 07:37 PM

在Python中,元组是不可变的序列,可以存储不同类型的多个元素。它们通常用于表示相关值的集合。元组求和涉及将两个或多个元组的相应元素相加以产生新的元组。然而,在某些场景下,可能需要计算元素的绝对和而不是传统的和。在这篇博文中,我们将探讨如何在Python中执行绝对元组求和。传统元组求和在深入研究绝对元组求和之前,让我们先了解如何进行传统的元组求和。给定两个长度相同的元组,我们可以使用简单的Python循环或列表推导来计算对应元素的和&nbsp;−deftuple_sum(t1,t2):

你知道Word表格怎么求和吗你知道Word表格怎么求和吗Mar 21, 2024 pm 01:10 PM

有时候,我们在Word表格中会经常遇到计数的问题;一般遇到这样的问题,大部分同学都回把Word表格复制到Excel中来计算;还有一部分同学会默默地拿起计算器去算。那有没有快速的方法来计算呢?当然有啊,其实在Word中也是可以计算求和的。那么,你知道该怎么操作吗?今天,我们就来一起来看一下吧!废话不多说,有需要的小伙伴赶紧收藏起来吧!步骤详情:1、首先,我们打开电脑上的Word软件,打开需要处理的文档。(如图所示)2、接着,我们将光标定位在求和数值所在的单元格上(如图所示);然后,我们点击【菜单栏

求交错符号等差数列的和求交错符号等差数列的和Sep 16, 2023 pm 05:01 PM

算术级数(AP)是一系列数字,其中连续两个项之间的差相同。差是通过从第一个项中减去第二个项来计算的。让我们以一个示例序列来了解AP,5,7,9,11,13,15,...这个算术级数的公差(d)是2。这意味着每个后续元素与前一个元素的差为2。这个序列的第一项(a)是5。找到第n项的一般公式是a{n}=a+(n-1)(d)在这个问题中,我们给出了一个AP,我们需要找到交替带符号平方的级数的和,级数将如下所示,a12-a22+a32-a42+a52+......让我们举一个例子,以便更清楚理解&

使用PHP中的array_sum()函数求数组中元素的和使用PHP中的array_sum()函数求数组中元素的和Nov 18, 2023 am 11:20 AM

标题:使用PHP中的array_sum()函数求取数组元素的和PHP是一种广泛使用的服务器端脚本语言,它提供了众多内置函数,可以简化开发过程并提高效率。其中,array_sum()函数是一个非常实用的函数,可以用于计算数组中元素的和。在本文中,我们将学习如何使用array_sum()函数,并给出具体的代码示例。首先,我们需要了解array_sum()函数的使

excel合计怎么自动求和excel合计怎么自动求和Mar 20, 2024 pm 12:20 PM

对于经常使用excel表格的用户来说,自动求和功能是非常简单的一种操作,而且可以根据我们的需求自动求和后保留几位小数位,比我们手动按计算器方便多了。对于小白用户来说,还需要从头学起excel合计怎么自动求和,下面一起来看看步骤:excel自动求和:首先,我们需要将A1单元格和B1单元格中的数字相加,并将结果显示在C1单元格中。要实现这一步骤,首先在A1和B1单元格中输入需要相加的数字。接着,选中C1单元格,输入以下公式:`=A1+B1`,按下回车键后,C1单元格将显示A1和B1单元格中数字的和。

如何在PHP中对数组个数进行求和操作如何在PHP中对数组个数进行求和操作Mar 13, 2024 pm 04:33 PM

如何在PHP中对数组个数进行求和操作在PHP中,我们经常会处理数组,并且有时候需要对数组中元素个数进行求和操作。本文将介绍如何在PHP中对数组个数进行求和操作,下面将具体展示代码示例。首先,我们需要创建一个包含多个数组的多维数组作为示例数据。假设我们有一个包含多个数组的多维数组如下:$data=array(array(1,2,3,4),

如何使用Go语言的数组函数求和并返回结果?如何使用Go语言的数组函数求和并返回结果?Jul 31, 2023 pm 02:25 PM

如何使用Go语言的数组函数求和并返回结果?Go语言提供了丰富的数组操作函数,其中包含了求数组元素和的函数。使用这些函数可以方便地对数组进行求和操作,并返回结果。本文将介绍如何使用Go语言的数组函数求和并返回结果,并附带代码示例。首先,我们先了解一下Go语言中的数组。数组是一种存储固定大小元素序列的数据结构。在Go语言中,数组的长度是固定的,而且数组的类型和元

excel求和公式怎么用-excel求和公式使用教程excel求和公式怎么用-excel求和公式使用教程Mar 05, 2024 pm 12:40 PM

有很多朋友还不知道excel求和公式怎么用,所以下面小编就讲解了excel求和公式的使用教程,有需要的小伙伴赶紧来看一下吧,相信对大家一定会有所帮助哦。第一步:首先我们打开Excel(如图所示)。第二步:进入Excel工作界面(如图所示)。第三步:接着我们打开需要编辑的文档,此处为示例文档(如图所示)。第四步:选中“总分”在fx函数框中输入“=C2+D2+E2”.然后按下回车键。总分出来了(如图所示)。第五步:点击填充框的下拉菜单。进行总分填充(如图所示)。第六步:填充下拉(如图所示)。第七步:

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Repo: How To Revive Teammates
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function

VSCode Windows 64-bit Download

VSCode Windows 64-bit Download

A free and powerful IDE editor launched by Microsoft