


On a two-dimensional plane, the number of jumps required to reach point (d, 0) from the origin
In this article we will discuss a possible solution to an exciting analytical problem, namely, reaching the point (d, 0) How many jumps are required. We will use a fixed jump length and target coordinates to find the minimum number of jumps required.
Input and output scenarios
Assume that the jump length can be a or b, and the target point is (d,0). The given output is then the minimum number of jumps required to reach the goal.
Input: a = 7, b = 5, d = 9 Output: 2 Input: a = 7, b = 5, d = 5 Output: 1 Input: a = 7, b = 5, d = 24 Output: 4
Suppose you are standing at the origin (0, 0) of the 2D plane. Your target coordinates are (d, 0). The only way to reach the target coordinates is to make a fixed-length jump. Your goal is to find an efficient way to reach your goal with the fewest number of jumps.
Use If statement
We will use an if statement to find the minimum number of jumps required to reach (d, 0).
First, we need to ensure that a is always greater than b, so that a represents a longer jump length, and b b> represents a shorter jump length. Therefore, if b > a, , then we assign the maximum value among a and b to a.
Next, we check if d is greater than or equal to a. If this condition is met, then we can simply calculate the minimum number of jumps using (d a - 1) / a. Here, (d a - 1) means the total distance with a jump length of "a" divided by a (i.e. the length of each jump) gives the number of jumps.
If d = 0, no jump is required.
If d = b, then we can directly reach the point by jumping the length of b.
If d > b and d , the minimum number of jumps is 2. This is because if we take a triangle XYZ such that X is the origin, Z is the target point, and Y is the point that satisfies XY = YZ = max(a, b). Then, the minimum jump will be 2, i.e. from X to Y and Y to Z.
Example
#include <iostream> using namespace std; int minJumps(int a, int b, int d) { // Check if b > a, then interchange the values of a and b if (b > a) { int cont = a; a = b; b = cont; } // When d >= a if (d >= a) return (d + a - 1) / a; // When the target point is 0 if (d == 0) return 0; // When d is equal to b. if (d == b) return 1; // When distance to be covered is not equal to b. return 2; } int main() { int a = 3, b = 5, d = 9; int result = minJumps(a, b, d); cout << "Minimum number of jumps required to reach (d, 0) from (0, 0) is: " << result << endl; return 0; }
Output
Minimum number of jumps required to reach (d, 0) from (0, 0) is: 2
Use division and modulo operators
If a or b has the value 0, then we can simply use the division and modulo operators to find the minimum number of jumps. Here, we divide the distance d by the hop length (since one of the hop lengths is 0) to get the number of hops.
Example
#include <iostream> using namespace std; int minJumps(int d, int jumpLength) { // To find number of complete jumps int numJumps = d / jumpLength; // If distance is not divisible by jump length if (d % jumpLength != 0) { numJumps++; } return numJumps; } int main() { int d = 24, jumpLength = 4; int result = minJumps(d, jumpLength); cout << "Minimum number of jumps required to reach (d, 0) from (0, 0) is: " << result << endl; return 0; }
Output
Minimum number of jumps required to reach (d, 0) from (0, 0) is: 6
Note - We can also use the ternary operator to write code in a concise way.
int minJumps(int d, int jumpLength) { int numJumps = (d % jumpLength == 0) ? (d / jumpLength) : (d / jumpLength) + 1; return numJumps; }
in conclusion
We discussed how to find the minimum number of jumps required to reach the target point (d, 0) from the origin in the 2D plane. We use an if statement to find the number of jumps where a and b are non-zero values (a and b b> are the jump lengths). If a or b is zero, then we can use division and modulo operators. To write code succinctly, we can use the ternary operator.
The above is the detailed content of On a two-dimensional plane, the number of jumps required to reach point (d, 0) from the origin. For more information, please follow other related articles on the PHP Chinese website!

C# uses automatic garbage collection mechanism, while C uses manual memory management. 1. C#'s garbage collector automatically manages memory to reduce the risk of memory leakage, but may lead to performance degradation. 2.C provides flexible memory control, suitable for applications that require fine management, but should be handled with caution to avoid memory leakage.

C still has important relevance in modern programming. 1) High performance and direct hardware operation capabilities make it the first choice in the fields of game development, embedded systems and high-performance computing. 2) Rich programming paradigms and modern features such as smart pointers and template programming enhance its flexibility and efficiency. Although the learning curve is steep, its powerful capabilities make it still important in today's programming ecosystem.

C Learners and developers can get resources and support from StackOverflow, Reddit's r/cpp community, Coursera and edX courses, open source projects on GitHub, professional consulting services, and CppCon. 1. StackOverflow provides answers to technical questions; 2. Reddit's r/cpp community shares the latest news; 3. Coursera and edX provide formal C courses; 4. Open source projects on GitHub such as LLVM and Boost improve skills; 5. Professional consulting services such as JetBrains and Perforce provide technical support; 6. CppCon and other conferences help careers

C# is suitable for projects that require high development efficiency and cross-platform support, while C is suitable for applications that require high performance and underlying control. 1) C# simplifies development, provides garbage collection and rich class libraries, suitable for enterprise-level applications. 2)C allows direct memory operation, suitable for game development and high-performance computing.

C Reasons for continuous use include its high performance, wide application and evolving characteristics. 1) High-efficiency performance: C performs excellently in system programming and high-performance computing by directly manipulating memory and hardware. 2) Widely used: shine in the fields of game development, embedded systems, etc. 3) Continuous evolution: Since its release in 1983, C has continued to add new features to maintain its competitiveness.

The future development trends of C and XML are: 1) C will introduce new features such as modules, concepts and coroutines through the C 20 and C 23 standards to improve programming efficiency and security; 2) XML will continue to occupy an important position in data exchange and configuration files, but will face the challenges of JSON and YAML, and will develop in a more concise and easy-to-parse direction, such as the improvements of XMLSchema1.1 and XPath3.1.

The modern C design model uses new features of C 11 and beyond to help build more flexible and efficient software. 1) Use lambda expressions and std::function to simplify observer pattern. 2) Optimize performance through mobile semantics and perfect forwarding. 3) Intelligent pointers ensure type safety and resource management.

C The core concepts of multithreading and concurrent programming include thread creation and management, synchronization and mutual exclusion, conditional variables, thread pooling, asynchronous programming, common errors and debugging techniques, and performance optimization and best practices. 1) Create threads using the std::thread class. The example shows how to create and wait for the thread to complete. 2) Synchronize and mutual exclusion to use std::mutex and std::lock_guard to protect shared resources and avoid data competition. 3) Condition variables realize communication and synchronization between threads through std::condition_variable. 4) The thread pool example shows how to use the ThreadPool class to process tasks in parallel to improve efficiency. 5) Asynchronous programming uses std::as


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

SublimeText3 English version
Recommended: Win version, supports code prompts!

WebStorm Mac version
Useful JavaScript development tools

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

Zend Studio 13.0.1
Powerful PHP integrated development environment