search
HomeBackend DevelopmentC++How to manage a complete circular queue of events in C++?

How to manage a complete circular queue of events in C++?

Sep 04, 2023 pm 06:41 PM
event handlingc language programmingCircular queue management

introduce

Circular Queue is an improvement on linear queues, which was introduced to solve the problem of memory waste in linear queues. Circular queues use the FIFO principle to insert and delete elements from it. In this tutorial, we will discuss the operation of a circular queue and how to manage it.

What is a circular queue?

A circular queue is another type of queue in a data structure, with its front end and back end connected to each other. It is also known as circular buffer. It operates similarly to a linear queue, so why do we need to introduce a new queue in the data structure?

When using a linear queue, when the queue reaches its maximum limit, there may be some memory space before the tail pointer. This results in memory loss, and a good algorithm should be able to make full use of resources.

In order to solve the problem of memory waste, developers introduced the concept of circular queue, which has the ability to circularly link to the backend and frontend, and can insert more elements.

How to manage a complete circular queue of events in C++?

Basic functions of circular queue

  • After − It returns the last value of the queue.

  • Front − It returns the front value of the queue.

  • deQueue − This built-in method is used to remove elements from the queue while checking if the queue is empty.

  • enQueue − This method is used to insert new elements while checking the queue size.

In the circular queue, elements are added from the back end and removed from the front end. deQueue and enQueue are queue size-independent functions and are implemented using the modulo operator. Their time complexity is O(1).

Manage Circular Queue

We manage circular queues by using enQueue and deQueue operations. Initially, the front value of the circular queue is 0, the rear value is -1, and all elements in the circular queue are NULL.

Example

C code, using array to implement circular queue

#include <bits/stdc++.h>
using namespace std;
 
class Queue {
   //Initializing front and rear of the queue
   int rear, front;
   int sz;
   int* arr;
 
   public:
   Queue(int s) {
      front = rear = -1;
      sz = s;
      arr = new int[s];
   }
   
   void enQueue(int v);
   int deQueue();
   void displayQueue();
};
 
//Circular queue function
void Queue::enQueue(int v) {
   if ((front == 0 && rear == sz - 1)
      || (rear == (front - 1) % (sz - 1))) {
         printf("\nNo Space Queue is Full");
         return;
      }
   
      //Inserting the front element
      else if (front == -1) {
         front = rear = 0;
         arr[rear] = v;
      }
   
      else if (rear == sz - 1 && front != 0) {
         rear = 0;
         arr[rear] = v;
      }
   
      else {
         rear++;
         arr[rear] = v;
      }
}
 
//Function for deleting queue elements
int Queue::deQueue() {
   if (front == -1) {
      printf("\nQueue needs data it is empty");
      return INT_MIN;
   }
   
   int ele = arr[front];
   arr[front] = -1;
   if (front == rear) {
      front = -1;
      rear = -1;
   }
   else if (front == sz - 1)
      front = 0;
   else
      front++;
   return ele;
}
 
//Printing Circular queue elements
void Queue::displayQueue() {
   if (front == -1) {
      printf("\nQueue Empty");
      return;
   }
   printf("\nCircular Queue elements are: \n");
   if (rear >= front) {
      for (int i = front; i <= rear; i++)
      printf("%d ", arr[i]);
   } else {
      for (int i = front; i < sz; i++)
      printf("%d ", arr[i]);
   
      for (int i = 0; i <= rear; i++)
      printf("%d ", arr[i]);
   }
}
 
int main() {
   Queue q(5);
   //Pushing data in circular queue
   q.enQueue(10);
   q.enQueue(20);
   q.enQueue(3);
   q.enQueue(5);
   //Printing circular queue elements
   q.displayQueue();
   
   //Deleting front elements of circular queue
   printf("\nDeleted element = %d\n", q.deQueue());
   printf("\nDeleted element = %d", q.deQueue());
   q.displayQueue();
   q.enQueue(13);
   q.enQueue(27);
   q.enQueue(50);
   q.displayQueue();
   q.enQueue(22);
   
   return 0;
}

Output

Circular Queue elements are: 
10 20 3 5 
Deleted element = 10

Deleted element = 20
Circular Queue elements are: 
3 5 
Circular Queue elements are: 
3 5 13 27 50 
No Space Queue is Full

in conclusion

Circular queues are used in memory management and CPU scheduling. It uses the displayQueue() function to display queue elements.

We have reached the end of this tutorial. I hope this tutorial helped you understand how to implement a circular queue.

The above is the detailed content of How to manage a complete circular queue of events in C++?. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:tutorialspoint. If there is any infringement, please contact admin@php.cn delete
C# vs. C  : Learning Curves and Developer ExperienceC# vs. C : Learning Curves and Developer ExperienceApr 18, 2025 am 12:13 AM

There are significant differences in the learning curves of C# and C and developer experience. 1) The learning curve of C# is relatively flat and is suitable for rapid development and enterprise-level applications. 2) The learning curve of C is steep and is suitable for high-performance and low-level control scenarios.

C# vs. C  : Object-Oriented Programming and FeaturesC# vs. C : Object-Oriented Programming and FeaturesApr 17, 2025 am 12:02 AM

There are significant differences in how C# and C implement and features in object-oriented programming (OOP). 1) The class definition and syntax of C# are more concise and support advanced features such as LINQ. 2) C provides finer granular control, suitable for system programming and high performance needs. Both have their own advantages, and the choice should be based on the specific application scenario.

From XML to C  : Data Transformation and ManipulationFrom XML to C : Data Transformation and ManipulationApr 16, 2025 am 12:08 AM

Converting from XML to C and performing data operations can be achieved through the following steps: 1) parsing XML files using tinyxml2 library, 2) mapping data into C's data structure, 3) using C standard library such as std::vector for data operations. Through these steps, data converted from XML can be processed and manipulated efficiently.

C# vs. C  : Memory Management and Garbage CollectionC# vs. C : Memory Management and Garbage CollectionApr 15, 2025 am 12:16 AM

C# uses automatic garbage collection mechanism, while C uses manual memory management. 1. C#'s garbage collector automatically manages memory to reduce the risk of memory leakage, but may lead to performance degradation. 2.C provides flexible memory control, suitable for applications that require fine management, but should be handled with caution to avoid memory leakage.

Beyond the Hype: Assessing the Relevance of C   TodayBeyond the Hype: Assessing the Relevance of C TodayApr 14, 2025 am 12:01 AM

C still has important relevance in modern programming. 1) High performance and direct hardware operation capabilities make it the first choice in the fields of game development, embedded systems and high-performance computing. 2) Rich programming paradigms and modern features such as smart pointers and template programming enhance its flexibility and efficiency. Although the learning curve is steep, its powerful capabilities make it still important in today's programming ecosystem.

The C   Community: Resources, Support, and DevelopmentThe C Community: Resources, Support, and DevelopmentApr 13, 2025 am 12:01 AM

C Learners and developers can get resources and support from StackOverflow, Reddit's r/cpp community, Coursera and edX courses, open source projects on GitHub, professional consulting services, and CppCon. 1. StackOverflow provides answers to technical questions; 2. Reddit's r/cpp community shares the latest news; 3. Coursera and edX provide formal C courses; 4. Open source projects on GitHub such as LLVM and Boost improve skills; 5. Professional consulting services such as JetBrains and Perforce provide technical support; 6. CppCon and other conferences help careers

C# vs. C  : Where Each Language ExcelsC# vs. C : Where Each Language ExcelsApr 12, 2025 am 12:08 AM

C# is suitable for projects that require high development efficiency and cross-platform support, while C is suitable for applications that require high performance and underlying control. 1) C# simplifies development, provides garbage collection and rich class libraries, suitable for enterprise-level applications. 2)C allows direct memory operation, suitable for game development and high-performance computing.

The Continued Use of C  : Reasons for Its EnduranceThe Continued Use of C : Reasons for Its EnduranceApr 11, 2025 am 12:02 AM

C Reasons for continuous use include its high performance, wide application and evolving characteristics. 1) High-efficiency performance: C performs excellently in system programming and high-performance computing by directly manipulating memory and hardware. 2) Widely used: shine in the fields of game development, embedded systems, etc. 3) Continuous evolution: Since its release in 1983, C has continued to add new features to maintain its competitiveness.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
Will R.E.P.O. Have Crossplay?
1 months agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

SublimeText3 English version

SublimeText3 English version

Recommended: Win version, supports code prompts!

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool