Given an n*n grid maze. Our mouse appears in the upper left corner of the grid. Now the mouse can only move down or forward, and in this variant the mouse can make multiple jumps if and only if the block now has a non-zero value. The maximum jump that the mouse can make from the current cell is the number present in the cell, now your task is to find out if the mouse can reach the bottom right corner of the grid, for example -
Input : { { {1, 1, 1, 1}, {2, 0, 0, 2}, {3, 1, 0, 0}, {0, 0, 0, 1} }, Output : { {1, 1, 1, 1}, {0, 0, 0, 1}, {0, 0, 0, 0}, {0, 0, 0, 1} } Input : { {2, 1, 0, 0}, {2, 0, 0, 1}, {0, 1, 0, 1}, {0, 0, 0, 1} } Output: Path doesn't exist
Ways to find the solution
In this approach we will use backtracking to keep track of every path the mouse can take now. If the mouse reaches its destination from any path, we return true for that path and then print that path. Otherwise, we print that the path does not exist.
Example
#include <bits/stdc++.h> using namespace std; #define N 4 // size of our grid bool solveMaze(int maze[N][N], int x, int y, // recursive function for finding the path int sol[N][N]){ if (x == N - 1 && y == N - 1) { // if we reached our goal we return true and mark our goal as 1 sol[x][y] = 1; return true; } if (x >= 0 && y >= 0 && x < N && y < N && maze[x][y]) { sol[x][y] = 1; // we include this index as a path for (int i = 1; i <= maze[x][y] && i < N; i++) { // as maze[x][y] denotes the number of jumps you can take //so we check for every jump in every direction if (solveMaze(maze, x + i, y, sol) == true) // jumping right return true; if (solveMaze(maze, x, y + i, sol) == true) // jumping downward return true; } sol[x][y] = 0; // if none are true then the path doesn't exist //or the path doesn't contain current cell in it return false; } return false; } int main(){ int maze[N][N] = { { 2, 1, 0, 0 }, { 3, 0, 0, 1 },{ 0, 1, 0, 1 }, { 0, 0, 0, 1 } }; int sol[N][N]; memset(sol, 0, sizeof(sol)); if(solveMaze(maze, 0, 0, sol)){ for(int i = 0; i < N; i++){ for(int j = 0; j < N; j++) cout << sol[i][j] << " "; cout << "\n"; } } else cout << "Path doesn't exist\n"; return 0; }
Output
1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1
Explanation of the above code
In the above method, we check every path it can generate from the current cell , when inspecting, we now mark the path as one. When our path reaches a dead end, we check if the dead end is our destination. Now, if that's not our destination, we backtrack, and when we backtrack, we mark the cell as 0 because that path is invalid, and that's how our code handles it.
Conclusion
In this tutorial we will solve a mouse problem in a maze, allowing for multiple steps or jumps. We also learned the C program for this problem and the complete method (general) to solve it. We can write the same program in other languages such as C, java, python and other languages. We hope you found this tutorial helpful.
The above is the detailed content of C++ Rat in maze allowing multiple steps or jumps. For more information, please follow other related articles on the PHP Chinese website!

This article explains the C Standard Template Library (STL), focusing on its core components: containers, iterators, algorithms, and functors. It details how these interact to enable generic programming, improving code efficiency and readability t

This article details efficient STL algorithm usage in C . It emphasizes data structure choice (vectors vs. lists), algorithm complexity analysis (e.g., std::sort vs. std::partial_sort), iterator usage, and parallel execution. Common pitfalls like

The article discusses dynamic dispatch in C , its performance costs, and optimization strategies. It highlights scenarios where dynamic dispatch impacts performance and compares it with static dispatch, emphasizing trade-offs between performance and

C 20 ranges enhance data manipulation with expressiveness, composability, and efficiency. They simplify complex transformations and integrate into existing codebases for better performance and maintainability.

This article details effective exception handling in C , covering try, catch, and throw mechanics. It emphasizes best practices like RAII, avoiding unnecessary catch blocks, and logging exceptions for robust code. The article also addresses perf

The article discusses using move semantics in C to enhance performance by avoiding unnecessary copying. It covers implementing move constructors and assignment operators, using std::move, and identifies key scenarios and pitfalls for effective appl

Article discusses effective use of rvalue references in C for move semantics, perfect forwarding, and resource management, highlighting best practices and performance improvements.(159 characters)

C memory management uses new, delete, and smart pointers. The article discusses manual vs. automated management and how smart pointers prevent memory leaks.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

Dreamweaver CS6
Visual web development tools

SublimeText3 Linux new version
SublimeText3 Linux latest version

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),
