


From individual adversarial to manifold adversarial: CVPR 2023 explores generalizable manifold adversarial attacks
Is the facial recognition system that claims to be 99% accurate really unbreakable? In fact, the face recognition system can be easily broken by making some changes in face photos that do not affect visual judgment. For example, the girl next door and the male celebrity can be judged as the same person. This is an adversarial attack. The goal of adversarial attacks is to find adversarial samples that are natural and can confuse the neural network. In essence, finding adversarial samples is to find the vulnerabilities of the neural network.
Recently, a research team from Dongfang University of Technology proposed a paradigm of generalized manifold adversarial attack (GMAA),promoting the traditional "point" attack mode to The "surface" attack mode greatly improves the generalization ability of the adversarial attack model and develops a new idea for the work of adversarial attacks.
This research improves previous work from two aspects: target domain and adversarial domain. On the target domain, this study finds more powerful adversarial examples with high generalization by attacking the set of states of the target identity. For the adversarial domain, previous work was looking for discrete adversarial samples, that is, finding several "loopholes" (points) of the system, while this research is looking for continuous adversarial manifolds, that is, finding the fragile integral parts of the neural network. Piece "area" (face). In addition, this study introduces domain knowledge of expression editing and proposes a new paradigm based on expression state space instantiation. By continuously sampling the generated adversarial manifold, we can obtain highly generalizable adversarial samples with continuous expression changes. Compared with methods such as makeup, lighting, and adding perturbations, theexpression state space is more universal and natural, and is not affected by gender or lighting. Impact. Research paper has been accepted for CVPR 2023.
Introduction method
In the target domain part, previous work has been to design adversarial samples for a specific photo of target identity A. However, as shown in Figure 2, when the adversarial sample generated by this attack method is used to attack another photo of A, the attack effect will be significantly reduced. In the face of such attacks, regularly changing the photos in the facial recognition database is naturally an effective defense measure. However, the GMAA proposed in this study not only trains on a single sample of the target identity, but also looks for adversarial samples that can attack the set of target identity states.Such highly generalized adversarial samples face the updated face recognition library Have better attack performance. These more powerful adversarial examples also correspond to the weaker areas of the neural network and are worthy of in-depth exploration.
In previous research in the field of adversarial, people usually look for one or several discrete adversarial samples, which is equivalent to finding one or several "points" where the neural network is vulnerable in high-dimensional space. However, this study believes that neural networks may be vulnerable across the entire "face" and therefore should find all adversarial examples on this "face". Therefore, the goal of this research is to find adversarial manifolds in high-dimensional spaceTo sum up, GMAA is a new attack paradigm that usesadversarial manifolds to attack the state set of the target identity .
Please refer to Figure 1, which is the core idea of the article
From "Anatomy of Facial Expressions"
For the target field, this research aims to attack target sets containing multiple expression states to achieve better attack performance on unknown target photos; for the adversarial field, this research aims to establish a one-to-one correspondence with the AU space. Adversarial manifold, you can sample adversarial samples on the adversarial manifold by changing the AU value. By continuously changing the AU value, you can generate adversarial samples with continuously changing expressionsIt is worth noting that this study uses expression state space to instantiate the GMAA attack paradigm. This is because expression is the most common state in human facial activities, and the expression state space is relatively stable and will not be affected by race or gender (light can change skin color, and makeup can affect gender) . In fact, as long as other suitable state spaces can be found, this attack paradigm can be generalized and applied to other adversarial attack tasks in nature.
The content that needs to be rewritten is: model results
The visual results of this study are shown in the animation below. Each frame of animation is an adversarial sample obtained by sampling on the adversarial manifold. Continuous sampling can obtain a series of adversarial examples with continuously changing expressions (left). The red value in the animation represents the similarity between the adversarial sample of the current frame and the target sample (on the right) under the Face face recognition system




The content that needs to be rewritten is: Principle and method
Rewritten content: The core part of the model includes the WGAN-GP-based generation module, expression supervision module, transferability enhancement module and generalized attack module. Among them, the generalized attack module can realize the aggregation function of attack target states, and the transferability enhancement module is based on previous research work. For fair comparison, this module has been added to all benchmark models. The expression supervision module consists of four trained expression editors, and achieves expression conversion of adversarial samples through global structure supervision and local detail supervisioncontinuous adversarial manifolds and semantic continuous adversarial manifolds, and proves in detail the generated adversarial manifold and AU vector space Homeomorphism.
Summary is the induction and generalization of existing information or experience. It is a process of organizing and summarizing thoughts, aiming to extract the most important ideas and conclusions. Summarizing can help us better understand and remember what we have learned, and it can also help us better communicate and share our ideas. By summarizing, we can simplify complex information and distill it down to its core points, making it easier to understand and apply. Summary is an important tool in the learning and communication process. It can help us process and utilize large amounts of information more efficiently. Whether in study, work or life, summarizing is an essential skill
To sum up, this research proposes a new attack paradigm called GMAA, and at the same time Expanded the target domain and countermeasure domain, improving the performance of the attack. For the target domain, GMAA improves the generalization ability to the target identity by attacking a collection of states instead of a single image. Furthermore, GMAA extends the adversarial domain from discrete points to semantically continuous adversarial manifolds ("point-to-surface") . This study instantiates the GMAA attack paradigm by introducing domain knowledge of expression editing. Extensive comparative experiments prove that GMAA has better attack performance and more natural visual quality than other competing models.
The above is the detailed content of From individual adversarial to manifold adversarial: CVPR 2023 explores generalizable manifold adversarial attacks. For more information, please follow other related articles on the PHP Chinese website!

The term "AI-ready workforce" is frequently used, but what does it truly mean in the supply chain industry? According to Abe Eshkenazi, CEO of the Association for Supply Chain Management (ASCM), it signifies professionals capable of critic

The decentralized AI revolution is quietly gaining momentum. This Friday in Austin, Texas, the Bittensor Endgame Summit marks a pivotal moment, transitioning decentralized AI (DeAI) from theory to practical application. Unlike the glitzy commercial

Enterprise AI faces data integration challenges The application of enterprise AI faces a major challenge: building systems that can maintain accuracy and practicality by continuously learning business data. NeMo microservices solve this problem by creating what Nvidia describes as "data flywheel", allowing AI systems to remain relevant through continuous exposure to enterprise information and user interaction. This newly launched toolkit contains five key microservices: NeMo Customizer handles fine-tuning of large language models with higher training throughput. NeMo Evaluator provides simplified evaluation of AI models for custom benchmarks. NeMo Guardrails implements security controls to maintain compliance and appropriateness

AI: The Future of Art and Design Artificial intelligence (AI) is changing the field of art and design in unprecedented ways, and its impact is no longer limited to amateurs, but more profoundly affecting professionals. Artwork and design schemes generated by AI are rapidly replacing traditional material images and designers in many transactional design activities such as advertising, social media image generation and web design. However, professional artists and designers also find the practical value of AI. They use AI as an auxiliary tool to explore new aesthetic possibilities, blend different styles, and create novel visual effects. AI helps artists and designers automate repetitive tasks, propose different design elements and provide creative input. AI supports style transfer, which is to apply a style of image

Zoom, initially known for its video conferencing platform, is leading a workplace revolution with its innovative use of agentic AI. A recent conversation with Zoom's CTO, XD Huang, revealed the company's ambitious vision. Defining Agentic AI Huang d

Will AI revolutionize education? This question is prompting serious reflection among educators and stakeholders. The integration of AI into education presents both opportunities and challenges. As Matthew Lynch of The Tech Edvocate notes, universit

The development of scientific research and technology in the United States may face challenges, perhaps due to budget cuts. According to Nature, the number of American scientists applying for overseas jobs increased by 32% from January to March 2025 compared with the same period in 2024. A previous poll showed that 75% of the researchers surveyed were considering searching for jobs in Europe and Canada. Hundreds of NIH and NSF grants have been terminated in the past few months, with NIH’s new grants down by about $2.3 billion this year, a drop of nearly one-third. The leaked budget proposal shows that the Trump administration is considering sharply cutting budgets for scientific institutions, with a possible reduction of up to 50%. The turmoil in the field of basic research has also affected one of the major advantages of the United States: attracting overseas talents. 35

OpenAI unveils the powerful GPT-4.1 series: a family of three advanced language models designed for real-world applications. This significant leap forward offers faster response times, enhanced comprehension, and drastically reduced costs compared t


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function
