search
HomeBackend DevelopmentC++Level merging and path compression in union-find algorithm

Level merging and path compression in union-find algorithm

Aug 29, 2023 pm 03:37 PM
And search the collectionlevel mergepath compression

Level merging and path compression in union-find algorithm

Algorithms called union-find sets (or disjoint sets) are responsible for maintaining distinct sets and providing operations to verify membership in the sets and combine sets together. It handles union and lookup operations expertly, which is crucial for maintaining current connection information between elements.

grammar

To ensure clarity, let's first understand the syntax of the methods we are about to use in the following code examples.

// Method to perform Union operation
void Union(int x, int y);

// Method to find the representative element of a set
int Find(int x);

algorithm

The union search algorithm consists of two basic operations - union and search. The union operation combines two sets, and the search operation determines the representative element of the set. By iteratively applying the union lookup operation, we can build efficient union lookup data structures.

United by level

The join-by-level technique is used to optimize join operations by ensuring that smaller trees are always attached to the root of larger trees. This approach prevents the tree from becoming too unbalanced, resulting in inefficient lookup operations.

The algorithm for union by level is as follows -

  • Find the representative (root element) of the set containing elements x and y.

  • If the representatives are the same, return.

  • If the level of x's representative is greater than the level of y's representative, make y's representative point to x's representative and update the level of x's representative.

  • Otherwise, make x's representative point to y's representative, and update y's representative's ranking if necessary.

Path compression

Path compression is another optimization technique that reduces the height of the tree in the query data structure. Its purpose is to flatten the path during a seek operation, thus providing a shorter path for subsequent operations.

  • The algorithm for path compression is as follows -

  • Find the representative (root element) of the set containing element x.

  • When traversing the path from x to its representative, make each visited element point directly to the representative.

method

Now that we understand the basic concepts of rank-wise union and path compression, let's discuss two different ways to implement the union search algorithm in C.

Method 1: Array-based implementation

In this approach, we represent each collection as an array. The value at each index represents the element's parent element. Initially, each element is its own parent, indicating that it is a representative of its collection.

algorithm

  • Let's start the initialization process of the parent array. Each element will be assigned its own parent element.

  • Use path compression to implement search operations.

  • Use Union by Rank to implement Union operation.

Example

#include <iostream>
#define MAX_SIZE 100

// Initialize parent array
int parent[MAX_SIZE];
int rank[MAX_SIZE];

void makeSet(int n) {
   for (int i = 0; i < n; i++) {
      parent[i] = i;
      rank[i] = 0;
   }
}

int find(int x) {
   if (parent[x] != x) {
      parent[x] = find(parent[x]); // Path compression
   }
   return parent[x];
}

void Union(int x, int y) {
   int xRoot = find(x);
   int yRoot = find(y);
    
   if (xRoot == yRoot) {
      return;
   }
    
   // Union by rank
   if (rank[xRoot] < rank[yRoot]) {
      parent[xRoot] = yRoot;
   } else if (rank[xRoot] > rank[yRoot]) {
      parent[yRoot] = xRoot;
   } else {
      parent[yRoot] = xRoot;
      rank[xRoot]++;
   }
}

int main() {
   // Usage example
   makeSet(10); // Assuming 10 elements in the set
   Union(1, 2);
   Union(3, 4);
    
   // Print parent array
   for (int i = 0; i < 10; i++) {
      std::cout << "Element " << i << " Parent: " << parent[i] << std::endl;
   }
    
   return 0;
}

Output

Element 0 Parent: 0
Element 1 Parent: 1
Element 2 Parent: 1
Element 3 Parent: 3
Element 4 Parent: 3
Element 5 Parent: 5
Element 6 Parent: 6
Element 7 Parent: 7
Element 8 Parent: 8
Element 9 Parent: 9

Method 2: Tree-based implementation

To describe the collections in our study, we used a tree-based approach. Each item in the group is associated with its respective parent node, and we specify the root node to represent that specific collection.

algorithm

  • Initialize the parent array, where each element is its own parent element.

  • Use path compression and recursive tree traversal to implement search operations.

  • Use Union by Rank to implement Union operation.

  • Complete executable code

Example

#include <iostream>

#define MAX_SIZE 100

// Initialize parent array
int parent[MAX_SIZE];
int rank[MAX_SIZE];

void makeSet(int n) {
   for (int i = 0; i < n; i++) {
      parent[i] = i;
      rank[i] = 0;
   }
}

int find(int x) {
   if (parent[x] != x) {
      parent[x] = find(parent[x]); // Path compression
   }
   return parent[x];
}

void Union(int x, int y) {
   int xRoot = find(x);
   int yRoot = find(y);
   
   if (xRoot == yRoot) {
      return;
   }
    
   // Union by rank
   if (rank[xRoot] < rank[yRoot]) {
      parent[xRoot] = yRoot;
   } else if (rank[xRoot] > rank[yRoot]) {
      parent[yRoot] = xRoot;
   } else {
      parent[yRoot] = xRoot;
      rank[xRoot]++;
   }
}

int main() {
   // Usage example
   makeSet(10); // Assuming 10 elements in the set
   Union(1, 2);
   Union(3, 4);
    
   // Print parent array
   for (int i = 0; i < 10; i++) {
      std::cout << "Element " << i << " Parent: " << parent[i] << std::endl;
   }
    
   return 0;
}

Output

Element 0 Parent: 0
Element 1 Parent: 1
Element 2 Parent: 1
Element 3 Parent: 3
Element 4 Parent: 3
Element 5 Parent: 5
Element 6 Parent: 6
Element 7 Parent: 7
Element 8 Parent: 8
Element 9 Parent: 9

in conclusion

In short, hierarchical union and path compression are key technologies in the union search algorithm. They optimize union and lookup operations respectively, resulting in improved performance and efficient connection information management. By implementing these techniques in C, we can efficiently solve problems related to sets, connectivity, and graphs.

To summarize, we introduced the syntax, step-by-step algorithm, and provided two real C executable code examples. By understanding and applying rank-wise union and path compression, you can enhance your algorithmic skills and solve complex problems more efficiently.

The above is the detailed content of Level merging and path compression in union-find algorithm. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:tutorialspoint. If there is any infringement, please contact admin@php.cn delete
C# vs. C  : Memory Management and Garbage CollectionC# vs. C : Memory Management and Garbage CollectionApr 15, 2025 am 12:16 AM

C# uses automatic garbage collection mechanism, while C uses manual memory management. 1. C#'s garbage collector automatically manages memory to reduce the risk of memory leakage, but may lead to performance degradation. 2.C provides flexible memory control, suitable for applications that require fine management, but should be handled with caution to avoid memory leakage.

Beyond the Hype: Assessing the Relevance of C   TodayBeyond the Hype: Assessing the Relevance of C TodayApr 14, 2025 am 12:01 AM

C still has important relevance in modern programming. 1) High performance and direct hardware operation capabilities make it the first choice in the fields of game development, embedded systems and high-performance computing. 2) Rich programming paradigms and modern features such as smart pointers and template programming enhance its flexibility and efficiency. Although the learning curve is steep, its powerful capabilities make it still important in today's programming ecosystem.

The C   Community: Resources, Support, and DevelopmentThe C Community: Resources, Support, and DevelopmentApr 13, 2025 am 12:01 AM

C Learners and developers can get resources and support from StackOverflow, Reddit's r/cpp community, Coursera and edX courses, open source projects on GitHub, professional consulting services, and CppCon. 1. StackOverflow provides answers to technical questions; 2. Reddit's r/cpp community shares the latest news; 3. Coursera and edX provide formal C courses; 4. Open source projects on GitHub such as LLVM and Boost improve skills; 5. Professional consulting services such as JetBrains and Perforce provide technical support; 6. CppCon and other conferences help careers

C# vs. C  : Where Each Language ExcelsC# vs. C : Where Each Language ExcelsApr 12, 2025 am 12:08 AM

C# is suitable for projects that require high development efficiency and cross-platform support, while C is suitable for applications that require high performance and underlying control. 1) C# simplifies development, provides garbage collection and rich class libraries, suitable for enterprise-level applications. 2)C allows direct memory operation, suitable for game development and high-performance computing.

The Continued Use of C  : Reasons for Its EnduranceThe Continued Use of C : Reasons for Its EnduranceApr 11, 2025 am 12:02 AM

C Reasons for continuous use include its high performance, wide application and evolving characteristics. 1) High-efficiency performance: C performs excellently in system programming and high-performance computing by directly manipulating memory and hardware. 2) Widely used: shine in the fields of game development, embedded systems, etc. 3) Continuous evolution: Since its release in 1983, C has continued to add new features to maintain its competitiveness.

The Future of C   and XML: Emerging Trends and TechnologiesThe Future of C and XML: Emerging Trends and TechnologiesApr 10, 2025 am 09:28 AM

The future development trends of C and XML are: 1) C will introduce new features such as modules, concepts and coroutines through the C 20 and C 23 standards to improve programming efficiency and security; 2) XML will continue to occupy an important position in data exchange and configuration files, but will face the challenges of JSON and YAML, and will develop in a more concise and easy-to-parse direction, such as the improvements of XMLSchema1.1 and XPath3.1.

Modern C   Design Patterns: Building Scalable and Maintainable SoftwareModern C Design Patterns: Building Scalable and Maintainable SoftwareApr 09, 2025 am 12:06 AM

The modern C design model uses new features of C 11 and beyond to help build more flexible and efficient software. 1) Use lambda expressions and std::function to simplify observer pattern. 2) Optimize performance through mobile semantics and perfect forwarding. 3) Intelligent pointers ensure type safety and resource management.

C   Multithreading and Concurrency: Mastering Parallel ProgrammingC Multithreading and Concurrency: Mastering Parallel ProgrammingApr 08, 2025 am 12:10 AM

C The core concepts of multithreading and concurrent programming include thread creation and management, synchronization and mutual exclusion, conditional variables, thread pooling, asynchronous programming, common errors and debugging techniques, and performance optimization and best practices. 1) Create threads using the std::thread class. The example shows how to create and wait for the thread to complete. 2) Synchronize and mutual exclusion to use std::mutex and std::lock_guard to protect shared resources and avoid data competition. 3) Condition variables realize communication and synchronization between threads through std::condition_variable. 4) The thread pool example shows how to use the ThreadPool class to process tasks in parallel to improve efficiency. 5) Asynchronous programming uses std::as

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: How To Unlock Everything In MyRise
1 months agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

SecLists

SecLists

SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool