In C, variables of type Int are used to store positive or negative integer values, but this type cannot contain decimal values. For this, there are float and double values. The Double data type is specifically designed to retain decimal values to seven decimal places. Conversions between integer and double variables can be handled automatically by the compiler, called "implicit" conversions, or they can be explicitly triggered to the compiler by the programmer. We will discuss different conversion methods in the following chapters.
Implicit conversion
Implicit type conversion is automatically completed by the compiler. To achieve this, we need two variables; one of type integer and the other of type floating point. Then we just assign the integer value or variable to the floating point variable and everything else will be taken care of by the compiler.
algorithm
- Takes an integer value as input.
- Assign the value to a double variable.
- Display output.
grammar
int input = <integer value>; double output = input;
Example
#include <iostream> using namespace std; double solve(int value) { double opVal = value; return opVal; } int main() { int ip = 25; double op = solve(ip); cout<< "The input value is: " << ip << endl; cout<< "The output value is: " << op << endl; return 0; }
Output
The input value is: 25 The output value is: 25
As we can see, the conversion process is very simple. We don't need to do anything special, just assign the input variable to the output variable.
Explicit conversion
Explicit conversion occurs when the programmer explicitly instructs the compiler to convert one data type to another. This can be achieved in two ways, one is to specify the data type during assignment, the other is to use static_cast. We describe the first method first.
algorithm
- Take integer value as input;
- Use explicit conversion to boolean to assign the value to a double variable.
- Display output.
Mention the data type during assignment
This can also be done in two different ways. One is a C-style version and the other is a functional-style conversion.
The Chinese translation ofC-Styled version
is:C-Styled version
We mentioned the result data type before the source variable or the value contained in parentheses.
grammar
int input = <integer value>; double output = (double) input;
Example
#include <iostream> using namespace std; double solve(int value) { double opVal = (double) value; return opVal; } int main() { int ip = 35; double op = solve(ip); cout<< "The input value is: " << ip << endl; cout<< "The output value is: " << op << endl; return 0; }
Output
The input value is: 35 The output value is: 35
Functional style type conversion
We mentioned the result data type and enclose the source value in parentheses when passing parameters to the function.
grammar
int input = <integer value>; double output = double(input);
Example
#include <iostream> using namespace std; double solve(int value) { double opVal = double(value); return opVal; } int main() { int ip = 45; double op = solve(ip); cout<< "The input value is: " << ip << endl; cout<< "The output value is: " << op << endl; return 0; }
Output
The input value is: 45 The output value is: 45
Use static_cast
grammar
int input = <integer value>; double output = static_cast<double>(input);
Example
#include <iostream> using namespace std; double solve(int value) { double opVal = static_cast<double>(value); return opVal; } int main() { int ip = 55; double op = solve(ip); cout<< "The input value is: " << ip << endl; cout<< "The output value is: " << op << endl; return 0; }
Output
The input value is: 55 The output value is: 55
From the last three examples, we can see that the explicit conversion process is almost similar whether using static_cast, C-style conversion, or functional-style conversion. In all three cases we have to mention the result data type before assignment.
in conclusion
Covers several methods of converting integers to double values. Programmers must determine which conversion method is best for a specific situation, because different conversion scenarios require different conversion methods. However, because implicit conversions occur automatically, programmers don't have to worry about enforcing complex strategies.
The above is the detailed content of C++ program to convert int variable to double. For more information, please follow other related articles on the PHP Chinese website!

This article explains the C Standard Template Library (STL), focusing on its core components: containers, iterators, algorithms, and functors. It details how these interact to enable generic programming, improving code efficiency and readability t

This article details efficient STL algorithm usage in C . It emphasizes data structure choice (vectors vs. lists), algorithm complexity analysis (e.g., std::sort vs. std::partial_sort), iterator usage, and parallel execution. Common pitfalls like

The article discusses dynamic dispatch in C , its performance costs, and optimization strategies. It highlights scenarios where dynamic dispatch impacts performance and compares it with static dispatch, emphasizing trade-offs between performance and

This article details effective exception handling in C , covering try, catch, and throw mechanics. It emphasizes best practices like RAII, avoiding unnecessary catch blocks, and logging exceptions for robust code. The article also addresses perf

C 20 ranges enhance data manipulation with expressiveness, composability, and efficiency. They simplify complex transformations and integrate into existing codebases for better performance and maintainability.

The article discusses using move semantics in C to enhance performance by avoiding unnecessary copying. It covers implementing move constructors and assignment operators, using std::move, and identifies key scenarios and pitfalls for effective appl

Article discusses effective use of rvalue references in C for move semantics, perfect forwarding, and resource management, highlighting best practices and performance improvements.(159 characters)

C memory management uses new, delete, and smart pointers. The article discusses manual vs. automated management and how smart pointers prevent memory leaks.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

Atom editor mac version download
The most popular open source editor

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

Dreamweaver Mac version
Visual web development tools

Zend Studio 13.0.1
Powerful PHP integrated development environment
