search
HomeBackend DevelopmentC++Maximum possible balanced binary substring splitting, taking at most k

Maximum possible balanced binary substring splitting, taking at most k

The array in the C programming language has a fixed size, which means that once the size is specified, it cannot be changed; you can neither shrink it or extend it.

As we know, an array is a set of elements of the same data type, which are stored in a contiguous memory area.

Given an array of values ​​v[] and a binary array a[]. The objective is to use as many k coins to divide the binary array as much as is possible while ensuring that each segment has an equal amount of 0s and 1s. i and j are the neighboring indices of the split segment, and the cost of each split is (v[i] - v[j])2.

Problem Statement

Implement a program that finds the largest possible balanced binary substring split, costing at most k.

Example Example 1

Let the Input array be: 
a: [1,0,0, 1, 0, 0, 1, 1]
The given values be: 
v: [7, 8, 9, 10, 11, 12,13,14]
K: 1

Output obtained is: 1

Explanation

Since the value of K is 1, we can make a cut between the first and second index.

In this case, [0, 1] and [0, 0, 1, 1] are the balanced binary substrings of the final result.

Making this cut will cost (8 - 9)^ 2 = 1, and 1 = 1.

Example Example 2

Let the Input array be: 
a: [1,0 1, 0, 1, 1, 0,0]
The given values be: 
v: [2, 4, 7, 10, 11, 12, 13, 14]
K: 14
Output obtained is: 2

Explanation

The first cut will be made between the first and second index that is 4 and 7, costing us (4 - 7)^2 = 9 and the second cut will be made between the third and fourth index that is 7 and 10 , costing us (7 - 10)^ 2 = 9. No more cuts are possible at this time. The balanced binary substrings in this case that would arise are [1, 0], [1, 0], and [1, 1 , 0, 0].

Approach

In order to find maximum possible balanced binary substring splits with at most cost k, we take the following methodology.

Here we take a top-down approach to solve this problem and to find maximum possible balanced binary substring splits with at most cost k.

Use the top-down approach, or more commonly known as the dynamic programming approach. The main advantage of dynamic programming is the improved efficiency of simple recursion. Dynamic programming can be used to optimize any recursive solution that involves repeated calls to the same input. To avoid recomputing the results of subproblems later, the idea is to store them. With this simple optimization, the time complexity is reduced from polynomial to exponential.

Algorithm

The algorithm to find maximum possible balanced binary substring splits with at most cost K is given below.

  • Step One - Start

  • Step 2 - Define a two-dimensional matrix m

  • Step 3 - Define a function to find the largest possible balanced binary substring split.

  • Step 4 − Define integer variables zeroCount to count the number of zeros and oneCount to count the number of ones respectively

  • Step 5 − Define an integer variable cntSplits to calculate the number of splits

  • Step 6 - Iterate over the given array a

  • Step 7 − check whether the number of zeros is equal to the number of ones, then store the maximum feasible one

  • Step 8 - Assume the index is at position 0, then find out if it is 1 or 0, then increment the count

  • Step 9 − set the cntSplits to zero, if count of one and count of zero is unequal.

  • Step 10 - Store the resulting values ​​in the matrix

  • Step 11 − Print the desired result obtained

  • Step 12 − Stop

Example: C program

This is a C program implementation of the above algorithm for finding the largest possible balanced binary substring split, costing at most k.

#include <stdio.h>
#include <limits.h>
#include <string.h>
//Define a two-dimensional matrix m
int m[1001][1001];

//Define a function to find maximum possible //balanced binary substring splits
int maxSplits(int a[], int v[], int k, int s) {
   if (k < 0) {
      return INT_MIN;
   }
   if (m[k][s] != -1) {
      return m[k][s];
   }
   
   //Define integer variables to count the number of zeros and ones 
   // Define an integer variable to count the //number of splits
   int zeroCount = 0, oneCount = 0;
   int cntSplits = 0;
   int i;
   
   //Iterating through the given array a
   for (i = s - 1; i > 0; i--) {
      a[i] == 0 ? zeroCount++ : oneCount++;
      
   // check whether the number of zeros is equal to the number of ones, then store the maximum feasible one
      if (zeroCount == oneCount) {
         cntSplits = cntSplits > (1 + maxSplits(a, v, k - (v[i] - v[i - 1]) * (v[i] - v[i - 1]), i)) ? cntSplits : (1 + maxSplits(a, v, k - (v[i] - v[i - 1]) * (v[i] - v[i - 1]), i));
      }
   }
   
   //Suppose the index is at the position 0, then find whether it is a one or a zero. then increment the count
   if (i == 0) {
      a[0] == 0 ? zeroCount++ : oneCount++;
      
   // set the cntSplits to zero , if count of one and count of zero is unequal.
      if (zeroCount != oneCount) {
         cntSplits = 0;
      }
   }
   
   // store the resultant value in the matrix
   return m[k][s] = cntSplits;
}
int main() {
   int a[] = { 1, 0, 0, 1, 0, 0, 1, 1 };
   int v[] = { 7, 8, 9, 10, 11, 12, 13, 14 };
   int k = 1;
   int s = sizeof(a) / sizeof(a[0]);
   
   //To assign a specific value to a block of memory, we use the memset() function.
   memset(m, -1, sizeof(m));
   printf("%d\n", maxSplits(a, v, k, s));
   return 0;
}

Output

1

in conclusion

Similarly, we can find possible balanced binary substring splits that cost at most K.

In this paper, the challenge of getting a program to find the largest possible balanced binary substring splitting at most cost K is addressed.

C programming code is provided here along with an algorithm to find the largest possible balanced binary substring split, costing at most K.

The above is the detailed content of Maximum possible balanced binary substring splitting, taking at most k. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:tutorialspoint. If there is any infringement, please contact admin@php.cn delete
MySQL中如何使用LOCATE函数查找子字符串在字符串中的位置MySQL中如何使用LOCATE函数查找子字符串在字符串中的位置Jul 25, 2023 am 09:45 AM

MySQL中如何使用LOCATE函数查找子字符串在字符串中的位置在MySQL中,有许多函数可以用来处理字符串。其中,LOCATE函数是一种非常有用的函数,可以用来查找子字符串在字符串中的位置。LOCATE函数的语法如下:LOCATE(substring,string,[position])其中,substring为要查找的子字符串,string为要在其中

在Java中递归地计算子字符串出现的次数在Java中递归地计算子字符串出现的次数Sep 17, 2023 pm 07:49 PM

给定两个字符串str_1和str_2。目标是使用递归过程计算字符串str1中子字符串str2的出现次数。递归函数是在其定义中调用自身的函数。如果str1是"Iknowthatyouknowthatiknow",str2是"know"出现次数为-3让我们通过示例来理解。例如输入str1="TPisTPareTPamTP",str2="TP";输出Countofoccurrencesofasubstringrecursi

快速上手:Java中的JSON数组合并和拆分技巧。快速上手:Java中的JSON数组合并和拆分技巧。Sep 06, 2023 am 10:21 AM

快速上手:Java中的JSON数组合并和拆分技巧在现代的软件开发中,数据的格式和传输变得愈发重要。其中,JSON(JavaScriptObjectNotation)是一种常用的数据格式,特别适用于前后端交互和数据存储。在Java开发中,我们经常需要处理JSON对象和JSON数组。本文将介绍如何在Java中合并和拆分JSON数组,以及实现这些操作的技巧和示

strtok_r()函数是C语言中的一个函数,它的作用是将字符串分割成一系列子字符串strtok_r()函数是C语言中的一个函数,它的作用是将字符串分割成一系列子字符串Aug 26, 2023 am 09:45 AM

该函数与strtok()函数类似。唯一的关键区别是_r,它被称为可重入函数。可重入函数是在执行过程中可以被中断的函数。这种类型的函数可用于恢复执行。因此,可重入函数是线程安全的,这意味着它们可以安全地被线程中断,而不会造成任何损害。strtok_r()函数有一个称为上下文的额外参数。这样函数就可以在正确的位置恢复。strtok_r()函数的语法如下:#include<string.h>char*strtok_r(char*string,constchar*limiter,char**

如何使用PHP ZipArchive实现多个压缩包的合并和拆分?如何使用PHP ZipArchive实现多个压缩包的合并和拆分?Jul 21, 2023 am 10:17 AM

如何使用PHPZipArchive实现多个压缩包的合并和拆分?概述:在开发过程中,有时我们需要将多个压缩包合并成一个,或者将一个压缩包拆分成多个。PHP提供了ZipArchive扩展,可以方便地完成这些操作。本文将介绍如何使用PHPZipArchive实现多个压缩包的合并和拆分。合并多个压缩包首先,我们需要创建一个新的压缩包,并打开它。然后,循环遍历要合

PHP 正则表达式:如何从字符串中提取特定字符到结尾的子字符串PHP 正则表达式:如何从字符串中提取特定字符到结尾的子字符串Jun 22, 2023 pm 05:33 PM

正则表达式是一种强大的文本处理工具,它可以用来匹配特定模式的字符串。在PHP中,正则表达式常用于字符串处理、表单验证、搜索和替换等方面。本文将介绍如何使用PHP的正则表达式从字符串中提取特定字符到结尾的子字符串。首先,让我们看一个例子。假设我们有一个字符串$str,其中包含多个以“http://”开头的URL,我们想要提取这些URL,并存储在一

回文子字符串查询在C++中回文子字符串查询在C++中Sep 22, 2023 am 09:05 AM

在本教程中,我们需要解决给定字符串的回文子串查询。解决回文子串查询比解决C++中的常规查询复杂得多。它需要更复杂的代码和逻辑。在本教程中,我们提供了字符串str和Q个子字符串[L...R]查询,每个查询都有两个值L和R。我们的目标编写一个程序来解决查询以确定substring[L...R]是否是回文。我们必须确定在L到R范围内形成的子串是否是回文来解决每个查询。例如-Let&#39;sinput"abbbabaaaba"asourinputstring.Thequer

PHP返回一个字符串在另一个字符串中开始位置到结束位置的字符串PHP返回一个字符串在另一个字符串中开始位置到结束位置的字符串Mar 21, 2024 am 10:31 AM

这篇文章将为大家详细讲解有关PHP返回一个字符串在另一个字符串中开始位置到结束位置的字符串,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。PHP中使用substr()函数从字符串中提取子字符串substr()函数可从字符串中提取指定范围内的字符。其语法如下:substr(string,start,length)其中:string:要从中提取子字符串的原始字符串。start:子字符串开始位置的索引(从0开始)。length(可选):子字符串的长度。如果未指定,则提

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Repo: How To Revive Teammates
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
1 months agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.