


C++ program written using recursion to calculate the product of two numbers
Recursion is a technique of calling a function from the same function itself. There must be some base or terminating condition to end the recursive call. Recursive procedures are very helpful for performing complex iterative solutions with less code and finding easier solutions through sub-operations.
In this article, we will discuss the recursive method of performing the product (multiplication) between two numbers in C. First we understand the basic principles, recursive function calling syntax, algorithm and source code.
Use recursive multiplication
In high-level languages, there are multiplication operators that can perform multiplication directly. However, we know that multiplication is actually repeated addition. So the result of A*B is the number of repeated additions of A and B, or it can be said that the number of repeated additions of B and A. Whenever there are repetitions, we can do this using recursion. Let's look at the recursive function definition syntax first.
grammar
<return type> function_name ( parameter list ) { if ( base condition ) { terminate recursive call } recursive function call: function_name ( updated parameter list ) }
Algorithm
Let’s look at an algorithm that performs multiplication using recursion.
- Define a function multiply(), which accepts two numbers A and B
- If A
- Return multiplication (B, A)
- Otherwise when B is not 0, then
- Return A multiplication (A, B - 1)
- otherwise
- Return 0
- If it ends
Example
#include <iostream> #include <sstream> using namespace std; int multiply( int A, int B) { if( A < B ) { return multiply( B, A ); } else if( B != 0 ) { return A + multiply( A, B - 1 ); } else { return 0; } } int main() { cout << "Multiplication of 5, 7 is: " << multiply( 5, 7 ) << endl; cout << "Multiplication of 8, 0 is: " << multiply( 8, 0 ) << endl; cout << "Multiplication of 25, 3 is: " << multiply( 25, 3 ) << endl; cout << "Multiplication of 9, 1 is: " << multiply( 9, 1 ) << endl; }
Output
Multiplication of 5, 7 is: 35 Multiplication of 8, 0 is: 0 Multiplication of 25, 3 is: 75 Multiplication of 9, 1 is: 9
Look, in this program, the function parameters A and B are both integers. Now, after each step, it decrements the second parameter B by 1 and adds A to A itself. Like this, the function is performing the multiplication process.
in conclusion
Recursion is the process of calling the same function from the function itself. When calling a function recursively, we update or change the parameter set slightly so that the same effect does not occur again and again, and then divide the problem into smaller sub-problems and solve the problem by solving these smaller problems in a bottom-up approach . Almost anything that can be implemented using a loop can also be implemented using recursion. In this article, we saw the simple process of multiplying two integers using recursion. Add integers multiple times to get the final multiplication result.
The above is the detailed content of C++ program written using recursion to calculate the product of two numbers. For more information, please follow other related articles on the PHP Chinese website!

Mastering polymorphisms in C can significantly improve code flexibility and maintainability. 1) Polymorphism allows different types of objects to be treated as objects of the same base type. 2) Implement runtime polymorphism through inheritance and virtual functions. 3) Polymorphism supports code extension without modifying existing classes. 4) Using CRTP to implement compile-time polymorphism can improve performance. 5) Smart pointers help resource management. 6) The base class should have a virtual destructor. 7) Performance optimization requires code analysis first.

C destructorsprovideprecisecontroloverresourcemanagement,whilegarbagecollectorsautomatememorymanagementbutintroduceunpredictability.C destructors:1)Allowcustomcleanupactionswhenobjectsaredestroyed,2)Releaseresourcesimmediatelywhenobjectsgooutofscop

Integrating XML in a C project can be achieved through the following steps: 1) parse and generate XML files using pugixml or TinyXML library, 2) select DOM or SAX methods for parsing, 3) handle nested nodes and multi-level properties, 4) optimize performance using debugging techniques and best practices.

XML is used in C because it provides a convenient way to structure data, especially in configuration files, data storage and network communications. 1) Select the appropriate library, such as TinyXML, pugixml, RapidXML, and decide according to project needs. 2) Understand two ways of XML parsing and generation: DOM is suitable for frequent access and modification, and SAX is suitable for large files or streaming data. 3) When optimizing performance, TinyXML is suitable for small files, pugixml performs well in memory and speed, and RapidXML is excellent in processing large files.

The main differences between C# and C are memory management, polymorphism implementation and performance optimization. 1) C# uses a garbage collector to automatically manage memory, while C needs to be managed manually. 2) C# realizes polymorphism through interfaces and virtual methods, and C uses virtual functions and pure virtual functions. 3) The performance optimization of C# depends on structure and parallel programming, while C is implemented through inline functions and multithreading.

The DOM and SAX methods can be used to parse XML data in C. 1) DOM parsing loads XML into memory, suitable for small files, but may take up a lot of memory. 2) SAX parsing is event-driven and is suitable for large files, but cannot be accessed randomly. Choosing the right method and optimizing the code can improve efficiency.

C is widely used in the fields of game development, embedded systems, financial transactions and scientific computing, due to its high performance and flexibility. 1) In game development, C is used for efficient graphics rendering and real-time computing. 2) In embedded systems, C's memory management and hardware control capabilities make it the first choice. 3) In the field of financial transactions, C's high performance meets the needs of real-time computing. 4) In scientific computing, C's efficient algorithm implementation and data processing capabilities are fully reflected.

C is not dead, but has flourished in many key areas: 1) game development, 2) system programming, 3) high-performance computing, 4) browsers and network applications, C is still the mainstream choice, showing its strong vitality and application scenarios.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 English version
Recommended: Win version, supports code prompts!

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

Atom editor mac version download
The most popular open source editor

Notepad++7.3.1
Easy-to-use and free code editor
