Home >Backend Development >Python Tutorial >Optimize Python website access speed and achieve architectural solutions for high concurrent requests.
Optimize Python website access speed and achieve architectural solutions for high concurrent requests
Abstract: With the rapid development of the Internet, more and more websites need to handle a large number of Concurrent requests. How to optimize the access speed of the website and achieve the processing of high concurrent requests has become a key issue. This article will introduce some common methods of website optimization using Python language, and how to use efficient architectural solutions to handle high concurrent requests.
1. Common methods to optimize Python website access speed
import redis # 连接Redis r = redis.Redis(host='localhost', port=6379) def get_data_from_cache(key): # 从缓存中获取数据 data = r.get(key) if data: # 如果缓存中有数据,则直接返回 return data # 缓存中没有数据,则从数据库中查询 data = db.query(key) # 将查询结果存入缓存,并设置过期时间 r.setex(key, 3600, data) return data
import tornado.ioloop import tornado.web class MainHandler(tornado.web.RequestHandler): async def get(self): # 使用异步IO处理请求 response = await external_call() self.write(response) def make_app(): return tornado.web.Application([ (r"/", MainHandler), ]) if __name__ == "__main__": app = make_app() app.listen(8888) tornado.ioloop.IOLoop.current().start()
from concurrent.futures import ThreadPoolExecutor import time def handle_request(request): # 处理请求 time.sleep(1) # 模拟处理请求的时间 return "Response" def process_requests(requests): # 使用线程池处理并发请求 with ThreadPoolExecutor(max_workers=10) as executor: results = executor.map(handle_request, requests) return list(results) requests = [request1, request2, request3] # 并发请求列表 responses = process_requests(requests)
2. Use efficient architectural solutions to handle high concurrent requests
http { upstream backend { server backend1.example.com; server backend2.example.com; } server { listen 80; server_name example.com; location / { proxy_pass http://backend; } } }
from rediscluster import RedisCluster startup_nodes = [ {"host": "127.0.0.1", "port": "7000"}, {"host": "127.0.0.1", "port": "7001"}, {"host": "127.0.0.1", "port": "7002"}, ] rc = RedisCluster(startup_nodes=startup_nodes) def get_data_from_cache(key): # 从缓存中获取数据 data = rc.get(key) if data: # 如果缓存中有数据,则直接返回 return data # 缓存中没有数据,则从数据库中查询 data = db.query(key) # 将查询结果存入缓存,并设置过期时间 rc.setex(key, 3600, data) return data
Summary: Optimizing Python website access speed and handling high concurrent requests is a complex task that requires comprehensive consideration of multiple factors. This article introduces some common optimization methods and sample code that uses efficient architectural solutions to handle high concurrent requests. I hope it will be helpful to readers.
The above is the detailed content of Optimize Python website access speed and achieve architectural solutions for high concurrent requests.. For more information, please follow other related articles on the PHP Chinese website!