search
HomeBackend DevelopmentPython TutorialHow to perform non-maximal suppression of images using Python

How to perform non-maximal suppression of images using Python

Aug 26, 2023 am 10:28 AM
pythonImage processingnon-maximum suppression

How to perform non-maximal suppression of images using Python

How to use Python to perform non-maximum suppression on images

Non-maximum suppression is a commonly used image processing technology in computer vision. Used to extract edges or corners in images. In this article, we will use the Python programming language along with the OpenCV library to implement non-maximal suppression of images.

  1. Installing and importing libraries

First, make sure you have installed the Python and OpenCV libraries. You can use pip to install the OpenCV library: pip install opencv-python.

Then, import the required libraries:

import cv2
import numpy as np
  1. Loading and preprocessing images

Using OpenCV’s cv2.imread()The function loads the image and converts the image to grayscale using the grayscale image processing method. Grayscale images contain only one channel and are easier to process. The following code demonstrates how to load and preprocess an image:

# 读取图像
image = cv2.imread('image.jpg')

# 转换为灰度图像
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
  1. Compute Gradient

Non-maximal suppression is based on the image gradient and uses the magnitude and direction of the gradient to determine whether it is a maximum value. We can use the cv2.Sobel() function to calculate the gradient of the image.

# 计算x和y轴方向的梯度
gradient_x = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=3)
gradient_y = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=3)

# 计算梯度的大小和方向
magnitude = np.sqrt(gradient_x ** 2 + gradient_y ** 2)
angle = np.arctan2(gradient_y, gradient_x)
  1. Performing non-maximum suppression

Next, we will use the magnitude and direction of the gradient to perform non-maximum suppression. For each pixel, we will check its two adjacent pixels, and if the magnitude of the gradient is larger than the adjacent pixels and is a maximum value in the gradient direction, then retain the pixel as an edge.

# 非极大抑制
suppressed = np.zeros_like(magnitude)

for y in range(1, magnitude.shape[0] - 1):
    for x in range(1, magnitude.shape[1] - 1):
        current_gradient = magnitude[y, x]
        current_angle = angle[y, x]

        if (current_angle >= 0 and current_angle < np.pi / 8) or (current_angle >= 7 * np.pi / 8 and current_angle < np.pi):
            before_gradient = magnitude[y, x - 1]
            after_gradient = magnitude[y, x + 1]
        elif current_angle >= np.pi / 8 and current_angle < 3 * np.pi / 8:
            before_gradient = magnitude[y - 1, x - 1]
            after_gradient = magnitude[y + 1, x + 1]
        elif current_angle >= 3 * np.pi / 8 and current_angle < 5 * np.pi / 8:
            before_gradient = magnitude[y - 1, x]
            after_gradient = magnitude[y + 1, x]
        else:
            before_gradient = magnitude[y - 1, x + 1]
            after_gradient = magnitude[y + 1, x - 1]

        if current_gradient >= before_gradient and current_gradient >= after_gradient:
            suppressed[y, x] = current_gradient
  1. Display the results

Finally, we use the cv2.imshow() function to display the original image and the non-maximum suppression results. The code is as follows:

# 显示结果
cv2.imshow('Original Image', image)
cv2.imshow('Non-maximum Suppressed Image', suppressed)
cv2.waitKey(0)
cv2.destroyAllWindows()

The above is the complete sample code for non-maximum suppression of images using Python. With the above steps, we can easily use Python and OpenCV libraries to implement non-maximum suppression to extract edges or corners in images. Parameters and code logic can be adjusted as needed to achieve better results.

The above is the detailed content of How to perform non-maximal suppression of images using Python. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Learning Python: Is 2 Hours of Daily Study Sufficient?Learning Python: Is 2 Hours of Daily Study Sufficient?Apr 18, 2025 am 12:22 AM

Is it enough to learn Python for two hours a day? It depends on your goals and learning methods. 1) Develop a clear learning plan, 2) Select appropriate learning resources and methods, 3) Practice and review and consolidate hands-on practice and review and consolidate, and you can gradually master the basic knowledge and advanced functions of Python during this period.

Python for Web Development: Key ApplicationsPython for Web Development: Key ApplicationsApr 18, 2025 am 12:20 AM

Key applications of Python in web development include the use of Django and Flask frameworks, API development, data analysis and visualization, machine learning and AI, and performance optimization. 1. Django and Flask framework: Django is suitable for rapid development of complex applications, and Flask is suitable for small or highly customized projects. 2. API development: Use Flask or DjangoRESTFramework to build RESTfulAPI. 3. Data analysis and visualization: Use Python to process data and display it through the web interface. 4. Machine Learning and AI: Python is used to build intelligent web applications. 5. Performance optimization: optimized through asynchronous programming, caching and code

Python vs. C  : Exploring Performance and EfficiencyPython vs. C : Exploring Performance and EfficiencyApr 18, 2025 am 12:20 AM

Python is better than C in development efficiency, but C is higher in execution performance. 1. Python's concise syntax and rich libraries improve development efficiency. 2.C's compilation-type characteristics and hardware control improve execution performance. When making a choice, you need to weigh the development speed and execution efficiency based on project needs.

Python in Action: Real-World ExamplesPython in Action: Real-World ExamplesApr 18, 2025 am 12:18 AM

Python's real-world applications include data analytics, web development, artificial intelligence and automation. 1) In data analysis, Python uses Pandas and Matplotlib to process and visualize data. 2) In web development, Django and Flask frameworks simplify the creation of web applications. 3) In the field of artificial intelligence, TensorFlow and PyTorch are used to build and train models. 4) In terms of automation, Python scripts can be used for tasks such as copying files.

Python's Main Uses: A Comprehensive OverviewPython's Main Uses: A Comprehensive OverviewApr 18, 2025 am 12:18 AM

Python is widely used in data science, web development and automation scripting fields. 1) In data science, Python simplifies data processing and analysis through libraries such as NumPy and Pandas. 2) In web development, the Django and Flask frameworks enable developers to quickly build applications. 3) In automated scripts, Python's simplicity and standard library make it ideal.

The Main Purpose of Python: Flexibility and Ease of UseThe Main Purpose of Python: Flexibility and Ease of UseApr 17, 2025 am 12:14 AM

Python's flexibility is reflected in multi-paradigm support and dynamic type systems, while ease of use comes from a simple syntax and rich standard library. 1. Flexibility: Supports object-oriented, functional and procedural programming, and dynamic type systems improve development efficiency. 2. Ease of use: The grammar is close to natural language, the standard library covers a wide range of functions, and simplifies the development process.

Python: The Power of Versatile ProgrammingPython: The Power of Versatile ProgrammingApr 17, 2025 am 12:09 AM

Python is highly favored for its simplicity and power, suitable for all needs from beginners to advanced developers. Its versatility is reflected in: 1) Easy to learn and use, simple syntax; 2) Rich libraries and frameworks, such as NumPy, Pandas, etc.; 3) Cross-platform support, which can be run on a variety of operating systems; 4) Suitable for scripting and automation tasks to improve work efficiency.

Learning Python in 2 Hours a Day: A Practical GuideLearning Python in 2 Hours a Day: A Practical GuideApr 17, 2025 am 12:05 AM

Yes, learn Python in two hours a day. 1. Develop a reasonable study plan, 2. Select the right learning resources, 3. Consolidate the knowledge learned through practice. These steps can help you master Python in a short time.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
Will R.E.P.O. Have Crossplay?
1 months agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

Atom editor mac version download

Atom editor mac version download

The most popular open source editor