


Golang Image Processing: Learn How to Make Color Adjustments and Color Mapping
Golang Image Processing: Learn how to perform color adjustment and color mapping
Introduction:
In the field of image processing, color adjustment is a very important operation. By adjusting the colors of an image, we can change the look and mood of the picture, making it more appealing. In this article, we will learn how to use Golang for color adjustment and color mapping, along with code examples.
1. Basics of Golang image processing
Before starting to learn color adjustment, we need to understand some basic knowledge of Golang image processing. First, we need to import the Golang image processing library.
import ( "image" "image/color" "image/jpeg" "os" )
We can then open an image and decode it into a Golang image object using the Decode
function.
file, err := os.Open("input.jpg") if err != nil { panic(err) } defer file.Close() img, err := jpeg.Decode(file) if err != nil { panic(err) }
Through the above code, we successfully decoded an image named input.jpg
into a Golang image object img
. Next, we can perform color adjustment and color mapping operations on the image object.
2. Color adjustment
- Brightness adjustment
Brightness adjustment is to change the lightness and darkness of the image by changing the brightness value of the pixels. The code below shows how to increase the brightness value of an image by 50%.
func adjustBrightness(img image.Image, value float64) image.Image { bounds := img.Bounds() width, height := bounds.Max.X, bounds.Max.Y newImg := image.NewRGBA(bounds) for x := 0; x < width; x++ { for y := 0; y < height; y++ { r, g, b, a := img.At(x, y).RGBA() gray := (r + g + b) / 3 newR := clamp(uint32(float64(r) + value*float64(gray))) newG := clamp(uint32(float64(g) + value*float64(gray))) newB := clamp(uint32(float64(b) + value*float64(gray))) newImg.Set(x, y, color.RGBA{R: uint8(newR), G: uint8(newG), B: uint8(newB), A: uint8(a)}) } } return newImg } func clamp(value uint32) uint8 { if value > 255 { return 255 } if value < 0 { return 0 } return uint8(value) }
In the above code, the adjustBrightness
function accepts an image object and a brightness value, and then uses a double loop to traverse each pixel of the image, and performs the R, The G and B components are adjusted, and finally an adjusted image object is returned.
- Contrast adjustment
Contrast adjustment is to enhance or weaken the contrast of an image by expanding or compressing the brightness difference of the image. The code below shows how to increase the contrast of an image by 50%.
func adjustContrast(img image.Image, value float64) image.Image { bounds := img.Bounds() width, height := bounds.Max.X, bounds.Max.Y newImg := image.NewRGBA(bounds) for x := 0; x < width; x++ { for y := 0; y < height; y++ { r, g, b, a := img.At(x, y).RGBA() newR := clamp(uint32((float64(r) - 0.5*65535) * value + 0.5*65535)) newG := clamp(uint32((float64(g) - 0.5*65535) * value + 0.5*65535)) newB := clamp(uint32((float64(b) - 0.5*65535) * value + 0.5*65535)) newImg.Set(x, y, color.RGBA{R: uint8(newR), G: uint8(newG), B: uint8(newB), A: uint8(a)}) } } return newImg }
In the above code, the adjustContrast
function accepts an image object and a contrast value, and then uses a double loop to traverse each pixel of the image, and performs the R, The G and B components are adjusted, and finally an adjusted image object is returned.
3. Color mapping
Color mapping refers to changing the appearance and color of an image by mapping one or some colors in the original image to a new color value. The code below shows how to map red in an image to blue.
func colorMap(img image.Image, oldColor, newColor color.RGBA) image.Image { bounds := img.Bounds() width, height := bounds.Max.X, bounds.Max.Y newImg := image.NewRGBA(bounds) for x := 0; x < width; x++ { for y := 0; y < height; y++ { r, g, b, a := img.At(x, y).RGBA() if r == uint32(oldColor.R)*65535 && g == uint32(oldColor.G)*65535 && b == uint32(oldColor.B)*65535 { newImg.Set(x, y, newColor) } else { newImg.Set(x, y, color.RGBA{R: uint8(r / 256), G: uint8(g / 256), B: uint8(b / 256), A: uint8(a / 256)}) } } } return newImg }
In the above code, the colorMap
function accepts an image object, an old color and a new color, and then uses a double loop to traverse each pixel of the image and determine whether the color of the current pixel Matches the old color, changes the color of the pixel to the new color if it matches, and finally returns a color-mapped image object.
Conclusion
By studying this article, we learned how to use Golang for color adjustment and color mapping. By adjusting the image's brightness, contrast, and mapping colors, we can change the appearance and color of the image to make it more appealing. I hope this article can be helpful to everyone's learning and practice in Golang image processing.
The above is the detailed content of Golang Image Processing: Learn How to Make Color Adjustments and Color Mapping. For more information, please follow other related articles on the PHP Chinese website!

Golang is more suitable for high concurrency tasks, while Python has more advantages in flexibility. 1.Golang efficiently handles concurrency through goroutine and channel. 2. Python relies on threading and asyncio, which is affected by GIL, but provides multiple concurrency methods. The choice should be based on specific needs.

The performance differences between Golang and C are mainly reflected in memory management, compilation optimization and runtime efficiency. 1) Golang's garbage collection mechanism is convenient but may affect performance, 2) C's manual memory management and compiler optimization are more efficient in recursive computing.

ChooseGolangforhighperformanceandconcurrency,idealforbackendservicesandnetworkprogramming;selectPythonforrapiddevelopment,datascience,andmachinelearningduetoitsversatilityandextensivelibraries.

Golang and Python each have their own advantages: Golang is suitable for high performance and concurrent programming, while Python is suitable for data science and web development. Golang is known for its concurrency model and efficient performance, while Python is known for its concise syntax and rich library ecosystem.

In what aspects are Golang and Python easier to use and have a smoother learning curve? Golang is more suitable for high concurrency and high performance needs, and the learning curve is relatively gentle for developers with C language background. Python is more suitable for data science and rapid prototyping, and the learning curve is very smooth for beginners.

Golang and C each have their own advantages in performance competitions: 1) Golang is suitable for high concurrency and rapid development, and 2) C provides higher performance and fine-grained control. The selection should be based on project requirements and team technology stack.

Golang is suitable for rapid development and concurrent programming, while C is more suitable for projects that require extreme performance and underlying control. 1) Golang's concurrency model simplifies concurrency programming through goroutine and channel. 2) C's template programming provides generic code and performance optimization. 3) Golang's garbage collection is convenient but may affect performance. C's memory management is complex but the control is fine.

Goimpactsdevelopmentpositivelythroughspeed,efficiency,andsimplicity.1)Speed:Gocompilesquicklyandrunsefficiently,idealforlargeprojects.2)Efficiency:Itscomprehensivestandardlibraryreducesexternaldependencies,enhancingdevelopmentefficiency.3)Simplicity:


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

Dreamweaver Mac version
Visual web development tools

Dreamweaver CS6
Visual web development tools