


Number of paths from root to leaves with at most M consecutive nodes and value K
Introduction
Binary trees are a fascinating data structure with a wide range of applications in computer science and programming. An interesting problem is to find the count from a given tree consisting of a parent node and its children. A binary tree is composed of nodes, the root node is determined, and the root node can provide child nodes according to user needs. The K value is determined, and the movement method is selected by the M value.
Count of root to leaf paths
The graph is created using various nodes that hold values in the form of integers. This article mainly focuses on counting from the starting node or root node to the leaf node or child node.
Example
The graph is created from a binary tree with various nodes.
In the above binary tree, the root node is selected as "8".
Then create two nodes, one with a value of 3 and the other with a value of 10, occupying the left and right positions of the root node.
With the node with value 2 as the root, create another child node with values 2 and 1 as left and right nodes respectively.
Finally, a child node with a value of 1 creates a child node with a value of -4.
Method 1: C code to use a recursive function to compute a root-to-leaf path consisting of up to M consecutive nodes with K values
To solve this problem efficiently, we will utilize basic concepts such as tree traversal algorithm and recursion.
algorithm
Step 1: Create a structure to represent the tree node, which includes two pointers (left child node and right child node) and an integer field to store the node value.
Step 2: Design a recursive function to traverse the binary tree starting from the root, while tracking the current path length (initialized to 0), the number of consecutive occurrences (initially set to 0), and the target value K, allowing The maximum number of consecutive occurrences M.
Step 3: Call the function recursively on each left and right subtree, passing updated parameters such as incremental path length and number of consecutive occurrences (if applicable).
Step 4: For each non-empty node visited during the traversal:
a) If its value is equal to K, add one to both variables.
b) Reset the variable to zero if its value does not match K or exceeds the number of consecutive occurrences of M that have been encountered so far in the path.
Step 5: While traversing the tree, if the value of the child node is zero in both the left and right cases - we can handle it in two ways, namely
a) Check whether the variable does not exceed M.
b) If yes, increase the total number of paths that meet the condition by 1.
Example
//including the all in one header #include<bits/stdc++.h> using namespace std; //creating structure with two pointers as up and down struct Vertex { int data; struct Vertex* up; struct Vertex* down; }; //countPaths function declared with five arguments ; with root = end; Node= vertex; left = up; right = down int countPaths(Vertex* end, int K, int M, int currCount, int consCount) { //To check the condition when the root is equal to 1 and greater than the maximum value, the values is incremented if (end == NULL || consCount > M) { return 0; } //To check when the root is equal to the K value, increment by 1 if (end->data == K) { currCount++; consCount++; } else { //If it is not equal, it will return 0 currCount = 0; } if (end->up == NULL && end->down == NULL) { if (currCount <= M) { return 1; } else { return 0; } } return countPaths(end->up, K, M, currCount, consCount) + countPaths(end->down, K, M, currCount, consCount); } //Main function to test the implementation int main() { Vertex* end = new Vertex(); end->data = 8; end->up = new Vertex(); end->up->data = 3; end->down = new Vertex(); end->down->data = 10; end->up->up = new Vertex(); end->up->up->data = 2; end->up->down = new Vertex(); end->up->down->data = 1; end->up->down->up = new Vertex(); end->up->down->up->data = -4; int K = 1; // Value of node int M = 2; // Maximum consecutive nodes int currCount = -1; // Current count int consCount = -1; // Consecutive count cout << "The number of paths obtained from the given graph of" << M << "nodes with a value of " << K << " is " << countPaths(end, K, M, currCount, consCount) << endl; return 0; }
Output
The number of paths obtained from the given graph of 2 nodes with a value of 1 is 3
in conclusion
In this article, we explore the problem of counting the number of paths from the top (i.e., leaf) to the tip or root. Such problems can be solved efficiently by using tree traversal algorithms and recursive techniques in C. The process of traversing a binary tree may seem difficult, but it becomes easy with examples.
The above is the detailed content of Number of paths from root to leaves with at most M consecutive nodes and value K. For more information, please follow other related articles on the PHP Chinese website!

C Learners and developers can get resources and support from StackOverflow, Reddit's r/cpp community, Coursera and edX courses, open source projects on GitHub, professional consulting services, and CppCon. 1. StackOverflow provides answers to technical questions; 2. Reddit's r/cpp community shares the latest news; 3. Coursera and edX provide formal C courses; 4. Open source projects on GitHub such as LLVM and Boost improve skills; 5. Professional consulting services such as JetBrains and Perforce provide technical support; 6. CppCon and other conferences help careers

C# is suitable for projects that require high development efficiency and cross-platform support, while C is suitable for applications that require high performance and underlying control. 1) C# simplifies development, provides garbage collection and rich class libraries, suitable for enterprise-level applications. 2)C allows direct memory operation, suitable for game development and high-performance computing.

C Reasons for continuous use include its high performance, wide application and evolving characteristics. 1) High-efficiency performance: C performs excellently in system programming and high-performance computing by directly manipulating memory and hardware. 2) Widely used: shine in the fields of game development, embedded systems, etc. 3) Continuous evolution: Since its release in 1983, C has continued to add new features to maintain its competitiveness.

The future development trends of C and XML are: 1) C will introduce new features such as modules, concepts and coroutines through the C 20 and C 23 standards to improve programming efficiency and security; 2) XML will continue to occupy an important position in data exchange and configuration files, but will face the challenges of JSON and YAML, and will develop in a more concise and easy-to-parse direction, such as the improvements of XMLSchema1.1 and XPath3.1.

The modern C design model uses new features of C 11 and beyond to help build more flexible and efficient software. 1) Use lambda expressions and std::function to simplify observer pattern. 2) Optimize performance through mobile semantics and perfect forwarding. 3) Intelligent pointers ensure type safety and resource management.

C The core concepts of multithreading and concurrent programming include thread creation and management, synchronization and mutual exclusion, conditional variables, thread pooling, asynchronous programming, common errors and debugging techniques, and performance optimization and best practices. 1) Create threads using the std::thread class. The example shows how to create and wait for the thread to complete. 2) Synchronize and mutual exclusion to use std::mutex and std::lock_guard to protect shared resources and avoid data competition. 3) Condition variables realize communication and synchronization between threads through std::condition_variable. 4) The thread pool example shows how to use the ThreadPool class to process tasks in parallel to improve efficiency. 5) Asynchronous programming uses std::as

C's memory management, pointers and templates are core features. 1. Memory management manually allocates and releases memory through new and deletes, and pay attention to the difference between heap and stack. 2. Pointers allow direct operation of memory addresses, and use them with caution. Smart pointers can simplify management. 3. Template implements generic programming, improves code reusability and flexibility, and needs to understand type derivation and specialization.

C is suitable for system programming and hardware interaction because it provides control capabilities close to hardware and powerful features of object-oriented programming. 1)C Through low-level features such as pointer, memory management and bit operation, efficient system-level operation can be achieved. 2) Hardware interaction is implemented through device drivers, and C can write these drivers to handle communication with hardware devices.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SublimeText3 Chinese version
Chinese version, very easy to use

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

Dreamweaver Mac version
Visual web development tools

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.