Home >Backend Development >C++ >C++ program to find the number of iterations required to convert all cells to black
Suppose, we have a grid containing two types of cells; black cells and white blood cells. Black cells are represented by "#" and white cells are represented by "." The grid is provided to us as an array of strings. Now we have to do the following.
We convert each white cell to a black cell and share a side with the black cell. We do this until every cell of the grid turns black.
We calculate the number of iterations required to convert all cells of the grid to black. The starting grid must contain one black cell.
So if the input is something like h = 4, w = 4, grid = {"#..." , ".#.." , "....", "...#"}
#. | . | . | |
. | #. | . | |
. | . | . | . |
##. | . | . |
Define an array dx of size: 4 containing := { 1, 0, - 1, 0 } Define an array dy of size: 4 containing := { 0, 1, 0, - 1 } Define one 2D array distance Define one queue q that contain integer pairs for initialize i := 0, when i < h, update (increase i by 1), do: for initialize j := 0, when j < w, update (increase j by 1), do: if grid[i, j] is same as '#', then: distance[i, j] := 0 insert one pair(i, j) into q while (not q is empty), do: first element of auto now = q delete element from q for initialize dir := 0, when dir < 4, update (increase dir by 1), do: cx := first value of now + dx[dir] cy := second value of now + dy[dir] if cx < 0 or cx >= h or cy < 0 or cy >= w, then: if distance[cx, cy] is same as -1, then: distance[cx, cy] := distance[first value of now, second value of now] + 1 insert one pair (cx, cy) into q ans := 0 for initialize i := 0, when i < h, update (increase i by 1), do: for initialize j := 0, when j < w, update (increase j by 1), do: ans := maximum of ans and distance[i, j] print(ans)ExampleLet us see the below implementation to get better Understand −
#include <bits/stdc++.h> using namespace std; void solve(int h, int w, vector <string> grid){ int dx[4] = { 1, 0, -1, 0 }; int dy[4] = { 0, 1, 0, -1 }; vector<vector<int>> distance(h, vector<int>(w, -1)); queue<pair<int, int>> q; for (int i = 0; i < h; i++) { for (int j = 0; j < w; j++) { if (grid[i][j] == '#') { distance[i][j] = 0; q.push(pair<int, int>(i,j)); } } } while (!q.empty()) { auto now = q.front(); q.pop(); for (int dir = 0; dir < 4; dir++) { int cx = now.first + dx[dir]; int cy = now.second + dy[dir]; if (cx < 0 || cx >= h || cy < 0 || cy >= w) continue; if (distance[cx][cy] == -1) { distance[cx][cy] = distance[now.first][now.second] + 1; q.push(pair<int, int> (cx, cy)); } } } int ans = 0; for (int i = 0; i < h; ++i) { for (int j = 0; j < w; ++j) { ans = max(ans, distance[i][j]); } } cout << ans << endl; } int main() { int h = 4, w = 4; vector<string> grid = {"#...", ".#.." , "....", "...#"}; solve(h, w, grid); return 0; }Input
4, 4, {"#...", ".#.." , "....", "...#"}
3
The above is the detailed content of C++ program to find the number of iterations required to convert all cells to black. For more information, please follow other related articles on the PHP Chinese website!