


In this problem, we need to find the average of the set bit count after performing all selected K operations on the given string.
Brute force methods can be used to solve the problem, but we will use probability principles to overcome the time complexity of brute force methods.
Problem Statement - We are given an integer N, an array arr[] containing K positive integers, and a binary string of length N containing only set bits. We need to find the average of the set bit count after performing all possible K operations. In the i-th operation, we can flip any arr[i] bit in the given string.
Example
Input– N = 2, arr[] = {1, 2}
Output– 1
Description – The initial binary string is 11.
In the first step, we can flip the first character and the string will be 01.
In the second operation, we need to flip any two bits. So the string will become 10.
The second selection can start by flipping the second character from the first step and the string will be 10.
In the second step of the current operation, we need to flip any 2 bits, and the string can be 01.
So, we have two choices, the final string can be 01 or 10.
Total selections = 2, total set bits in final string = 2, ans = 2/2 = 1.
Input– N = 3, arr[] = {2, 2}
Output– 1.6667
Explanation – We have an initial string which is 111.
In the first operation, we can flip any 2 characters. So the string could be 001, 100, 010.
In the second operation, we can flip 2 bits in the resulting string from the first operation.
When we flip any two bits of 001, we get 111, 010 and 100.
When we flip any 2 digits of 100, we can get 010, 111 and 001.
When we flip any two bits of 010, we can get 100, 001 and 111.
So, in the last operation, we got a total of 9 different strings.
The total number of setting digits in 9 strings=15, the total number of operations=9, the answer=15/9=1.6667
method one
Here, we will use the principle of probability to solve this problem. Suppose that after performing i-1 operations, the average value of the set bits is p and the average value of the unset bits is q. We need to calculate the average of the set bits and unset bits in the ith operation.
So, the updated value of p can be the average of the new set bits of p - the average of the new closed bits.
algorithm
Initialize P to N because we initially have N set bits, and initialize Q to 0 because we initially have 0 set bits.
Traverse the operation array.
Initialize prev_p and prev_q using P and Q values.
Update the P value using prev_p - prev_p * arr[i] / N prev_q * arr[i] / N, which will average the inverted bits to the set bits and average the set bits Invert to unset bits
Update Q value.
Return P value.
Example
is:Example
#include <bits/stdc++.h> using namespace std; double getAverageBits(int len, int K, int array[]) { // to store the average '1's in the binary string double P = len; // to store the average '0's in the binary string double Q = 0; // Traverse the array array[] for (int i = 0; i < K; i++) { // Initialize the prev_p and prev_q with P and Q, which we got from the previous iteration double prev_p = P, prev_q = Q; // Update the average '1's P = prev_p - prev_p * array[i] / len + prev_q * array[i] / len; // Update the average '0's Q = prev_q - prev_q * array[i] / len + prev_p * array[i] / len; } return P; } int main() { int N = 2; int array[] = {1}; int K = sizeof(array) / sizeof(array[0]); cout << "The average number of set bits after performing the operations is " << getAverageBits(N, K, array); return 0; }
Output
The average number of set bits after performing the operations is 1
Time complexity - O(K), where K is the length of the array.
Space Complexity - O(1) since we are not using any extra space.
In this tutorial we learned to find the average set bit after performing all possible choices of K operations. In single selection we need to perform all the operations given in the array.
The above is the detailed content of The average of the set bit counts in a given binary string after all possible K operations. For more information, please follow other related articles on the PHP Chinese website!

在这个问题中,我们需要找到给定字符串的最长非递增子序列。非递增的意思是字符要么相同,要么按降序排列。由于二进制字符串仅包含“0”和“1”,因此生成的字符串应以“1”开头并以“0”结尾,或者以“0”或“1”开头和结尾。为了解决这个问题,我们将统计字符串每个位置的前缀“1”和后缀“0”,并找到前缀“1”和后缀“0”的最大和。问题陈述-我们给出了二进制字符串str。我们需要从给定的字符串中找到最长的非递增子序列。示例Input–str="010100"Output–4说明最长的非递

pack()函数将数据打包到二进制字符串中。语法pack(format,args)参数格式-要使用的格式。以下是可能的值-a-NUL填充字符串A-空格填充字符串h-十六进制字符串,低半字节在前H-十六进制字符串,高半字节在前c-带符号字符C-无符号字符s-带符号短字符(始终为16位,机器字节顺序)S-无符号短整型(始终为16位,机器字节顺序)n-无符号短整型(始终为16位,大端字节顺序)v-无符号短整型(始终为16位,小端字节顺序)i-有符号整数(取决于机器的大小和字节顺序)I-无符号整数(取决

在给定的问题中,我们得到一个由0和1组成的字符串;我们需要找到以1开头的所有排列的总数。由于答案可能是一个巨大的数字,所以我们将其取模1000000007后输出。Input:str="10101001001"Output:210Input:str="101110011"Output:56我们将通过应用一些组合数学和建立一些公式来解决这个问题。解决方案的方法在这个方法中,我们将计算0和1的数量。现在假设n是我们字符串中出现的1的数量,m是我们字符串中出现的0

问题陈述我们有一个字符串str和一个二进制字符串B。两个字符串的长度都等于N。我们需要检查是否可以通过在字符串B中包含不相等字符的任意索引对上多次交换其字符,使字符串str成为回文字符串。示例示例输入str=‘AAS’B=‘101’输出‘YES’Explanation的中文翻译为:解释我们可以交换str[1]和str[2],因为B[1]和B[2]不相等。最终的字符串可以是'ASA'。输入str=‘AASS’B=‘1111’输出‘No’Explanation的中文翻译为:解释我们无法使字符串回文,

给定两个相同长度的二进制字符串str1和str2,我们必须通过从给定的相同长度的字符串中选择子字符串来最大化给定的函数值。给定的函数是这样的-fun(str1,str2)=(len(子字符串))/(2^xor(sub1,sub2))。这里,len(substring)是第一个子字符串的长度,而xor(sub1,sub2)是给定子字符串的异或,因为它们是二进制字符串,所以这是可能的。示例Input1:stringstr1=10110&stringstr2=11101Output:3说明我们

问题陈述我们给定了二进制字符串str,我们要求从字符串中删除最少的字符,以便我们可以将所有零放在1之前。示例输入str=‘00110100111’输出3说明这里,我们可以通过两种方式实现输出3。我们可以从字符串中删除arr[2]、arr[3]和arr[5]或arr[4]、arr[6]和arr[7]。输入str=‘001101011’输出2说明我们可以删除arr[4]和arr[6],将所有零放在1之前。输入str=‘000111’输出0说明在给定的字符串中,所有零都已放置在1之前,因此我们不需要从

这里我们将看到一个有趣的问题。假设给定一个值n。我们必须找到所有长度为n的字符串,其中没有连续的1。如果n=2,则数字为{00,01,10},所以输出为3。我们可以使用动态规划来解决它。假设我们有一个表'a'和'b'。其中arr[i]存储长度为i的二进制字符串的数量,其中没有连续的1,并以0结尾。类似地,b也是一样的,但以1结尾。我们可以在最后一个为0的情况下添加0或1,但如果最后一个为1,则只添加0。让我们看一下获取这个想法的算法。算法noConsecutiveOnes(n)-Begin&am

本文的目的是实现一个程序,用于计算由一个子字符串重复连接而成的长度为N的二进制字符串的数量。目标是确定通过重复连接给定文本的单个子字符串,可以创建多少长度为N的二进制字符串,其中N是一个正整数。问题陈述实现一个程序,用于计算重复连接子字符串的长度为N的二进制字符串的数量。示例示例1LetustaketheInput,N=3Output:2Explanation的中文翻译为:解释下面列出了长度为N=3的可行二进制字符串,其中重复连接了一个子字符串。"000":Thesubstr


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Dreamweaver Mac version
Visual web development tools

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Atom editor mac version download
The most popular open source editor

Notepad++7.3.1
Easy-to-use and free code editor
