Home >Java >javaTutorial >Distributed lock: 5 cases, from entry to burial
What I want to share with you today is Distributed Lock. This article uses five cases, diagrams, source code analysis, etc. to analyze.
Common synchronized, Lock and other locks are all implemented based on a single JVM
. What should we do in a distributed scenario? At this time, distributed locks appeared.
Regarding distributed implementation solutions, there are three popular ones in the industry:
1, based on database
2, based on Redis
3. Based on Zookeeper
In addition, there are also implementations using etcd
and consul
.
The two most commonly used solutions in development are Redis
and Zookeeper
, and the most complex of the two solutions and the most likely to cause problems is Redis
implementation plan, so today we will talk about the Redis
implementation plan.
@RestController public class IndexController { @Autowired private StringRedisTemplate stringRedisTemplate; /** * 模拟下单减库存的场景 * @return */ @RequestMapping(value = "/duduct_stock") public String deductStock(){ // 从redis 中拿当前库存的值 int stock = Integer.parseInt(stringRedisTemplate.opsForValue().get("stock")); if(stock > 0){ int realStock = stock - 1; stringRedisTemplate.opsForValue().set("stock",realStock + ""); System.out.println("扣减成功,剩余库存:" + realStock); }else{ System.out.println("扣减失败,库存不足"); } return "end"; } }Assume that the inventory (stock) is initialized in
Redis The value is 100.
int stock = Integer.parseInt(stringRedisTemplate.opsForValue().get("stock"));
这行代码,获取到的值都为100,紧跟着判断大于0后都进行-1操作,最后设置到redis 中的值都为99。但正常执行完成后redis中的值应为 95。
在遇到案例1的问题后,大部分人的第一反应都会想到加锁来控制事务的原子性,如下代码所示:
@RequestMapping(value = "/duduct_stock") public String deductStock(){ synchronized (this){ // 从redis 中拿当前库存的值 int stock = Integer.parseInt(stringRedisTemplate.opsForValue().get("stock")); if(stock > 0){ int realStock = stock - 1; stringRedisTemplate.opsForValue().set("stock",realStock + ""); System.out.println("扣减成功,剩余库存:" + realStock); }else{ System.out.println("扣减失败,库存不足"); } } return "end"; }
现在当有多个请求访问该接口时,同一时刻只有一个请求可进入方法体中进行库存的扣减,其余请求等候。
但我们都知道,synchronized 锁是属于JVM级别的,也就是我们俗称的“单机锁”。但现在基本大部分公司使用的都是集群部署,现在我们思考下以上代码在集群部署的情况下还能保证库存数据的一致性吗?
答案是不能,如上图所示,请求经Nginx分发后,可能存在多个服务同时从Redis中获取库存数据,此时只加synchronized (单机锁)是无效的,并发越高,出现问题的几率就越大。
setnx:将 key 的值设为 value,当且仅当 key 不存在。
若给定 key 已经存在,则 setnx 不做任何动作。
使用setnx实现简单的分布式锁:
/** * 模拟下单减库存的场景 * @return */ @RequestMapping(value = "/duduct_stock") public String deductStock(){ String lockKey = "product_001"; // 使用 setnx 添加分布式锁 // 返回 true 代表之前redis中没有key为 lockKey 的值,并已进行成功设置 // 返回 false 代表之前redis中已经存在 lockKey 这个key了 Boolean result = stringRedisTemplate.opsForValue().setIfAbsent(lockKey, "wangcp"); if(!result){ // 代表已经加锁了 return "error_code"; } // 从redis 中拿当前库存的值 int stock = Integer.parseInt(stringRedisTemplate.opsForValue().get("stock")); if(stock > 0){ int realStock = stock - 1; stringRedisTemplate.opsForValue().set("stock",realStock + ""); System.out.println("扣减成功,剩余库存:" + realStock); }else{ System.out.println("扣减失败,库存不足"); } // 释放锁 stringRedisTemplate.delete(lockKey); return "end"; }
我们知道 Redis 是单线程执行,现在再看案例2中的流程图时,哪怕高并发场景下多个请求都执行到了setnx的代码,redis会根据请求的先后顺序进行排列,只有排列在队头的请求才能设置成功。其它请求只能返回“error_code”。
当setnx设置成功后,可执行业务代码对库存扣减,执行完成后对锁进行释放。
我们再来思考下以上代码已经完美实现分布式锁了吗?能够支撑高并发场景吗?答案并不是,上面的代码还是存在很多问题的,离真正的分布式锁还差的很远。
我们分析一下,上面的代码存在的问题:
死锁
:假如第一个请求在setnx加锁
完成后,执行业务代码时出现了异常,那释放锁的代码就无法执行,后面所有的请求也都无法进行操作了。
针对死锁的问题,我们对代码再次进行优化,添加try-finally
,在finally
中添加释放锁代码,这样无论如何都会执行释放锁代码,如下所示:
/** * 模拟下单减库存的场景 * @return */ @RequestMapping(value = "/duduct_stock") public String deductStock(){ String lockKey = "product_001"; try{ // 使用 setnx 添加分布式锁 // 返回 true 代表之前redis中没有key为 lockKey 的值,并已进行成功设置 // 返回 false 代表之前redis中已经存在 lockKey 这个key了 Boolean result = stringRedisTemplate.opsForValue().setIfAbsent(lockKey, "wangcp"); if(!result){ // 代表已经加锁了 return "error_code"; } // 从redis 中拿当前库存的值 int stock = Integer.parseInt(stringRedisTemplate.opsForValue().get("stock")); if(stock > 0){ int realStock = stock - 1; stringRedisTemplate.opsForValue().set("stock",realStock + ""); System.out.println("扣减成功,剩余库存:" + realStock); }else{ System.out.println("扣减失败,库存不足"); } }finally { // 释放锁 stringRedisTemplate.delete(lockKey); } return "end"; }
经过改进后的代码是否还存在问题呢?我们思考正常执行的情况下应该是没有问题,但我们假设请求在执行到业务代码时服务突然宕机了,或者正巧你的运维同事重新发版,粗暴的 kill -9 掉了呢,那代码还能执行 finally 吗?
针对想到的问题,对代码再次进行优化,加入过期时间,这样即便出现了上述的问题,在时间到期后锁也会自动释放掉,不会出现“死锁”的情况。
@RequestMapping(value = "/duduct_stock") public String deductStock(){ String lockKey = "product_001"; try{ Boolean result = stringRedisTemplate.opsForValue().setIfAbsent(lockKey,"wangcp",10,TimeUnit.SECONDS); if(!result){ // 代表已经加锁了 return "error_code"; } // 从redis 中拿当前库存的值 int stock = Integer.parseInt(stringRedisTemplate.opsForValue().get("stock")); if(stock > 0){ int realStock = stock - 1; stringRedisTemplate.opsForValue().set("stock",realStock + ""); System.out.println("扣减成功,剩余库存:" + realStock); }else{ System.out.println("扣减失败,库存不足"); } }finally { // 释放锁 stringRedisTemplate.delete(lockKey); } return "end"; }
现在我们再思考一下,给锁加入过期时间后就可以了吗?就可以完美运行不出问题了吗?
超时时间设置的10s真的合适吗?如果不合适设置多少秒合适呢?如下图所示
Assume there are three requests at the same time.
We can see the problem by just simulating 3 requests now. If it is in a truly high-concurrency scenario, the lock may face "always invalid" or "permanent invalid".
So where is the specific problem? The summary is as follows:
We think about the corresponding solutions to the problem:
Spring Boot
IntegrationRedisson
Steps
<dependency> <groupId>org.redisson</groupId> <artifactId>redisson</artifactId> <version>3.6.5</version> </dependency>
@Bean public RedissonClient redisson(){ // 单机模式 Config config = new Config(); config.useSingleServer().setAddress("redis://192.168.3.170:6379").setDatabase(0); return Redisson.create(config); }
@RestController public class IndexController { @Autowired private RedissonClient redisson; @Autowired private StringRedisTemplate stringRedisTemplate; /** * 模拟下单减库存的场景 * @return */ @RequestMapping(value = "/duduct_stock") public String deductStock(){ String lockKey = "product_001"; // 1.获取锁对象 RLock redissonLock = redisson.getLock(lockKey); try{ // 2.加锁 redissonLock.lock(); // 等价于 setIfAbsent(lockKey,"wangcp",10,TimeUnit.SECONDS); // 从redis 中拿当前库存的值 int stock = Integer.parseInt(stringRedisTemplate.opsForValue().get("stock")); if(stock > 0){ int realStock = stock - 1; stringRedisTemplate.opsForValue().set("stock",realStock + ""); System.out.println("扣减成功,剩余库存:" + realStock); }else{ System.out.println("扣减失败,库存不足"); } }finally { // 3.释放锁 redissonLock.unlock(); } return "end"; } }
我们点击lock()
方法,查看源码,最终看到以下代码
<T> RFuture<T> tryLockInnerAsync(long leaseTime, TimeUnit unit, long threadId, RedisStrictCommand<T> command) { internalLockLeaseTime = unit.toMillis(leaseTime); return commandExecutor.evalWriteAsync(getName(), LongCodec.INSTANCE, command, "if (redis.call('exists', KEYS[1]) == 0) then " + "redis.call('hset', KEYS[1], ARGV[2], 1); " + "redis.call('pexpire', KEYS[1], ARGV[1]); " + "return nil; " + "end; " + "if (redis.call('hexists', KEYS[1], ARGV[2]) == 1) then " + "redis.call('hincrby', KEYS[1], ARGV[2], 1); " + "redis.call('pexpire', KEYS[1], ARGV[1]); " + "return nil; " + "end; " + "return redis.call('pttl', KEYS[1]);", Collections.<Object>singletonList(getName()), internalLockLeaseTime, getLockName(threadId)); }
没错,加锁最终执行的就是这段lua 脚本
语言。
if (redis.call('exists', KEYS[1]) == 0) then redis.call('hset', KEYS[1], ARGV[2], 1); redis.call('pexpire', KEYS[1], ARGV[1]); return nil; end;
脚本的主要逻辑为:
这样来看其实和我们前面案例中的实现方法好像没什么区别,但实际上并不是。
这段lua
脚本命令在Redis
中执行时,会被当成一条命令来执行,能够保证原子性,故要不都成功,要不都失败。
我们在源码中看到Redssion
的许多方法实现中很多都用到了lua
脚本,这样能够极大的保证命令执行的原子性。
下面是Redisson
锁自动“续命
”源码:
private void scheduleExpirationRenewal(final long threadId) { if (expirationRenewalMap.containsKey(getEntryName())) { return; } Timeout task = commandExecutor.getConnectionManager().newTimeout(new TimerTask() { @Override public void run(Timeout timeout) throws Exception { RFuture<Boolean> future = commandExecutor.evalWriteAsync(getName(), LongCodec.INSTANCE, RedisCommands.EVAL_BOOLEAN, "if (redis.call('hexists', KEYS[1], ARGV[2]) == 1) then " + "redis.call('pexpire', KEYS[1], ARGV[1]); " + "return 1; " + "end; " + "return 0;", Collections.<Object>singletonList(getName()), internalLockLeaseTime, getLockName(threadId)); future.addListener(new FutureListener<Boolean>() { @Override public void operationComplete(Future<Boolean> future) throws Exception { expirationRenewalMap.remove(getEntryName()); if (!future.isSuccess()) { log.error("Can't update lock " + getName() + " expiration", future.cause()); return; } if (future.getNow()) { // reschedule itself scheduleExpirationRenewal(threadId); } } }); } }, internalLockLeaseTime / 3, TimeUnit.MILLISECONDS); if (expirationRenewalMap.putIfAbsent(getEntryName(), task) != null) { task.cancel(); } }
这段代码是在加锁后开启一个守护线程
进行监听
。Redisson
超时时间默认设置30s,线程每10s调用一次判断锁还是否存在,如果存在则延长锁的超时时间。
现在,我们再回过头来看看案例5中的加锁代码与原理图,其实完善到这种程度已经可以满足很多公司的使用了,并且很多公司也确实是这样用的。但我们再思考下是否还存在问题呢?例如以下场景:
Redis
is deployed in a cluster in actual deployment and use. In high concurrency scenarios, we lock. After writing the key to the master node, the master still The master went down when it was not synchronized to the slave node. The original slave node became the new master node after election. At this time, the lock failure problem may occur. Redis
helps us queue the requests for execution, which means converting our parallelism into serialization. . There will definitely be no concurrency problems in serially executed code, but the performance of the program will definitely be affected. Thinking When solving the problem, we first think of the CAP principle (consistency, availability, partition tolerance), then the current Redis
satisfies AP (availability, partition tolerance). If we want to solve this problem, we need to find A distributed system that meets CP
(consistency, partition fault tolerance). The first thing that comes to mind is Zookeeper
. The inter-cluster data synchronization mechanism of Zookeeper
is that when the master node receives the data, it will not immediately return a successful feedback to the client. It will first communicate with the child node. Synchronization, the client will be notified of successful reception only after more than half of the nodes have completed synchronization.And if the master node goes down, the re-elected master node according to the Zab
protocol of Zookeeper
(Zookeeper
atomic broadcast) must have been successfully synchronized.
Then the question is, how do we choose between Redisson
and Zookeeper
distributed locks? The answer is that if the amount of concurrency is not that high, you can use Zookeeper
to do distributed locks, but its concurrency capability is far inferior to Redis
. If you have relatively high concurrency requirements, then use Redis. The occasional master-slave architecture lock failure problem is actually tolerable.
Regarding the second issue of improving performance, we can refer to the idea of lock segmentation technology of ConcurrentHashMap
, such as the inventory of our code The amount is currently 1000, then we can divide it into 10 segments, each segment is 100, and then lock each segment separately, so that the locking and processing of 10 requests can be performed at the same time. Of course, students who have requirements can continue to subdivide. But in fact, the Qps
of Redis
has reached 10W
, which is completely sufficient in scenarios without particularly high concurrency.
The above is the detailed content of Distributed lock: 5 cases, from entry to burial. For more information, please follow other related articles on the PHP Chinese website!