The greedy algorithm is a commonly used algorithm idea and is widely used in many problems. The core idea is to only consider the immediate optimal solution when making a decision at each step, without considering the long-term impact.
In C, the implementation of greedy algorithms often involves basic operations such as sorting and data processing. Below, we will introduce the idea of greedy algorithm and its implementation in C for several typical problems.
1. Activity Scheduling Problem
Given a set of activities, each activity has its start time and end time, and a person can only participate in one activity at a time. Ask how to arrange activities to ensure that this person participates in the maximum number of activities.
The idea of the greedy algorithm is to first sort each activity in ascending order by the end time, and then starting from the first activity, select the activity with the earliest end time as the first activity to participate. Then, select the activity with the earliest end time that is compatible with the current activity from the remaining activities and make it the next activity to participate in. Repeat this process until all activities have been scheduled.
The following is the C code implementation:
struct activity { int start; int end; } bool cmp(activity a, activity b) { return a.end < b.end; } int arrangeActivities(activity arr[], int n) { sort(arr, arr + n, cmp); int cnt = 1; int lastEnd = arr[0].end; for (int i = 1; i < n; i++) { if (arr[i].start >= lastEnd) { cnt++; lastEnd = arr[i].end; } } return cnt; }
2. Huffman encoding problem
Given a set of weights, they are required to be encoded into binary characters of unequal lengths string, so that the encoding length of the sum of all values is minimized.
The idea of the greedy algorithm is to first sort the weights in ascending order, select the two nodes with the smallest weights in each step to combine into a new node, and define its weight as the weight of these two nodes. Sum. Repeat this process until all nodes are combined into a root node. The binary tree corresponding to this root node is the Huffman tree. When traversing the Huffman tree, walking to the left means adding 0, and walking to the right means adding 1, so that the corresponding encoding of each weight can be solved.
The following is the C code implementation:
struct Node { int weight; int parent, leftChild, rightChild; } bool cmp(Node a, Node b) { return a.weight < b.weight; } void buildHuffmanTree(Node arr[], int n) { // 初始化所有节点 for (int i = 0; i < n; i++) { arr[i].parent = -1; arr[i].leftChild = -1; arr[i].rightChild = -1; } // 构建哈夫曼树 for (int i = n; i < 2 * n - 1; i++) { int minIndex1 = -1, minIndex2 = -1; for (int j = 0; j < i; j++) { if (arr[j].parent == -1) { if (minIndex1 == -1) { minIndex1 = j; } else if (minIndex2 == -1) { minIndex2 = j; } else { if (arr[j].weight < arr[minIndex1].weight) { minIndex2 = minIndex1; minIndex1 = j; } else if (arr[j].weight < arr[minIndex2].weight) { minIndex2 = j; } } } } arr[minIndex1].parent = i; arr[minIndex2].parent = i; arr[i].leftChild = minIndex1; arr[i].rightChild = minIndex2; arr[i].weight = arr[minIndex1].weight + arr[minIndex2].weight; } } void findHuffmanCode(Node arr[], int n) { // 从叶节点开始遍历哈夫曼树 for (int i = 0; i < n; i++) { string code = ""; int currentNode = i; while (arr[currentNode].parent != -1) { int parent = arr[currentNode].parent; if (arr[parent].leftChild == currentNode) { code = "0" + code; } else { code = "1" + code; } currentNode = parent; } cout << code << endl; } }
3. Solving the coin change problem
Given the face value of a set of coins and the amount of change to be made, ask the minimum required How many coins are needed to make up this amount.
The idea of the greedy algorithm is to first sort the coins in descending order by face value, then start with the coin with the largest face value, continue to take the coin until no more choices can be made, and then use the coin with the next largest face value until all the amount is collected. .
The following is the C code implementation:
bool cmp(int a, int b) { return a > b; } int minCoinNum(int coins[], int n, int amount) { sort(coins, coins + n, cmp); int cnt = 0; for (int i = 0; i < n; i++) { if (amount >= coins[i]) { cnt += amount / coins[i]; amount -= coins[i] * (amount / coins[i]); } } return cnt; }
In the actual development process, the greedy algorithm is often not the optimal solution, but its simplicity and efficiency make it widely used. Through the introduction of the above three typical problems, I believe readers can better understand and master the idea of greedy algorithm and its implementation in C.
The above is the detailed content of Greedy algorithm and its implementation in C++. For more information, please follow other related articles on the PHP Chinese website!

C# uses automatic garbage collection mechanism, while C uses manual memory management. 1. C#'s garbage collector automatically manages memory to reduce the risk of memory leakage, but may lead to performance degradation. 2.C provides flexible memory control, suitable for applications that require fine management, but should be handled with caution to avoid memory leakage.

C still has important relevance in modern programming. 1) High performance and direct hardware operation capabilities make it the first choice in the fields of game development, embedded systems and high-performance computing. 2) Rich programming paradigms and modern features such as smart pointers and template programming enhance its flexibility and efficiency. Although the learning curve is steep, its powerful capabilities make it still important in today's programming ecosystem.

C Learners and developers can get resources and support from StackOverflow, Reddit's r/cpp community, Coursera and edX courses, open source projects on GitHub, professional consulting services, and CppCon. 1. StackOverflow provides answers to technical questions; 2. Reddit's r/cpp community shares the latest news; 3. Coursera and edX provide formal C courses; 4. Open source projects on GitHub such as LLVM and Boost improve skills; 5. Professional consulting services such as JetBrains and Perforce provide technical support; 6. CppCon and other conferences help careers

C# is suitable for projects that require high development efficiency and cross-platform support, while C is suitable for applications that require high performance and underlying control. 1) C# simplifies development, provides garbage collection and rich class libraries, suitable for enterprise-level applications. 2)C allows direct memory operation, suitable for game development and high-performance computing.

C Reasons for continuous use include its high performance, wide application and evolving characteristics. 1) High-efficiency performance: C performs excellently in system programming and high-performance computing by directly manipulating memory and hardware. 2) Widely used: shine in the fields of game development, embedded systems, etc. 3) Continuous evolution: Since its release in 1983, C has continued to add new features to maintain its competitiveness.

The future development trends of C and XML are: 1) C will introduce new features such as modules, concepts and coroutines through the C 20 and C 23 standards to improve programming efficiency and security; 2) XML will continue to occupy an important position in data exchange and configuration files, but will face the challenges of JSON and YAML, and will develop in a more concise and easy-to-parse direction, such as the improvements of XMLSchema1.1 and XPath3.1.

The modern C design model uses new features of C 11 and beyond to help build more flexible and efficient software. 1) Use lambda expressions and std::function to simplify observer pattern. 2) Optimize performance through mobile semantics and perfect forwarding. 3) Intelligent pointers ensure type safety and resource management.

C The core concepts of multithreading and concurrent programming include thread creation and management, synchronization and mutual exclusion, conditional variables, thread pooling, asynchronous programming, common errors and debugging techniques, and performance optimization and best practices. 1) Create threads using the std::thread class. The example shows how to create and wait for the thread to complete. 2) Synchronize and mutual exclusion to use std::mutex and std::lock_guard to protect shared resources and avoid data competition. 3) Condition variables realize communication and synchronization between threads through std::condition_variable. 4) The thread pool example shows how to use the ThreadPool class to process tasks in parallel to improve efficiency. 5) Asynchronous programming uses std::as


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Dreamweaver Mac version
Visual web development tools

SublimeText3 English version
Recommended: Win version, supports code prompts!

Notepad++7.3.1
Easy-to-use and free code editor

Atom editor mac version download
The most popular open source editor

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.