C is a popular programming language that is powerful and flexible, suitable for a variety of application development. When developing applications in C, you often need to handle various signals. This article will introduce signal processing techniques in C to help developers better master this aspect.
1. Basic concepts of signal processing
A signal is a software interrupt used to notify the application of internal or external events. When a specific event occurs, the operating system sends a signal to the application, which the application can choose to ignore or respond to. In C, signals can be processed through signal handling functions. When an application receives a signal, it calls the signal handling function corresponding to the received signal.
2. Registration of signal processing functions
The signal processing functions in C need to be registered in the application so that they can be called when receiving a specific signal. Registration can be done using the "signal" function in the C standard library. The following is an example:
#include <signal.h> #include <iostream> void signal_handler(int signum){ std::cout << "Received signal: " << signum << std::endl; } int main() { signal(SIGINT, signal_handler); while (true) {} return 0; }
In the above example, we defined a function named "signal_handler", which will output the signal number when a signal is received. Use the "signal" function to associate the SIGINT signal with the "signal_handler" function. "while (true)" is used to wait for the reception of the signal.
3. Classification of signals
In C, signals can be divided into two types: standard signals and real-time signals.
Standard signals are sent by the operating system to notify applications of events that have occurred. Standard signals in C include: SIGABRT, SIGALRM, SIGFPE, SIGHUP, SIGILL, SIGINT, SIGKILL, SIGPIPE, SIGQUIT, SIGSEGV, SIGTERM and SIGUSR1/SIGUSR2. These signals can be processed through signal processing functions.
Real-time signals are sent by applications to notify other applications or threads of events. Real-time signals in C include: SIGRTMIN/SIGRTMAX. Unlike standard signals, real-time signals are reliable and deterministic.
4. Signal usage skills
- Priority of signal response
The signal response in C is determined according to priority. Different signals have different priorities. You can control the signal response by modifying the priority of the signal processing function. The priority is identified using the "sa_flags" field, and the priority order is: SA_SHIRQ, SA_RESTART, SA_NODEFER, SA_ONSTACK, SA_NOCLDSTOP, SA_NOCLDWAIT, SA_SIGINFO and SA_RESETHAND.
- Signal blocking
When an application receives a signal, the operating system marks the signal as pending. If the application receives the same signal again at this time, the operating system will discard the signal and the signal processing function will not be triggered. This situation is called signal blocking. In C, you can use the "sigprocmask" function to block signals, as shown below:
#include <signal.h> int main() { sigset_t mask; sigemptyset(&mask); sigaddset(&mask, SIGINT); sigprocmask(SIG_BLOCK, &mask, NULL); while (true) {} return 0; }
In the above example, we use the "sigprocmask" function to block the SIGINT signal. When executing the "while (true)" statement, the signal will be blocked and the signal processing function will not be triggered.
- Signal capture
Signal capture in C can be achieved by installing a signal processor. You can use the "sigaction" function to install a signal handler and bind a specific signal handler to a specific signal. The following is an example:
#include <signal.h> #include <iostream> void signal_handler(int signum){ std::cout << "Received signal: " << signum << std::endl; } int main() { struct sigaction act; sigemptyset(&act.sa_mask); act.sa_flags = 0; act.sa_handler = signal_handler; sigaction(SIGINT, &act, NULL); while (true) {} return 0; }
In the above example, we use the "sigaction" function to bind the SIGINT signal with the "signal_handler" function. When the SIGINT signal is received, the "signal_handler" function will be called to output the signal number.
4. Summary
This article introduces signal processing techniques in C, including registration of signal processing functions, signal classification, signal response priority, signal blocking and signal capture. Understanding these techniques can help developers better grasp the basic concepts and principles of signal processing and improve the reliability and stability of applications.
The above is the detailed content of Signal processing techniques in C++. For more information, please follow other related articles on the PHP Chinese website!

Converting from XML to C and performing data operations can be achieved through the following steps: 1) parsing XML files using tinyxml2 library, 2) mapping data into C's data structure, 3) using C standard library such as std::vector for data operations. Through these steps, data converted from XML can be processed and manipulated efficiently.

C# uses automatic garbage collection mechanism, while C uses manual memory management. 1. C#'s garbage collector automatically manages memory to reduce the risk of memory leakage, but may lead to performance degradation. 2.C provides flexible memory control, suitable for applications that require fine management, but should be handled with caution to avoid memory leakage.

C still has important relevance in modern programming. 1) High performance and direct hardware operation capabilities make it the first choice in the fields of game development, embedded systems and high-performance computing. 2) Rich programming paradigms and modern features such as smart pointers and template programming enhance its flexibility and efficiency. Although the learning curve is steep, its powerful capabilities make it still important in today's programming ecosystem.

C Learners and developers can get resources and support from StackOverflow, Reddit's r/cpp community, Coursera and edX courses, open source projects on GitHub, professional consulting services, and CppCon. 1. StackOverflow provides answers to technical questions; 2. Reddit's r/cpp community shares the latest news; 3. Coursera and edX provide formal C courses; 4. Open source projects on GitHub such as LLVM and Boost improve skills; 5. Professional consulting services such as JetBrains and Perforce provide technical support; 6. CppCon and other conferences help careers

C# is suitable for projects that require high development efficiency and cross-platform support, while C is suitable for applications that require high performance and underlying control. 1) C# simplifies development, provides garbage collection and rich class libraries, suitable for enterprise-level applications. 2)C allows direct memory operation, suitable for game development and high-performance computing.

C Reasons for continuous use include its high performance, wide application and evolving characteristics. 1) High-efficiency performance: C performs excellently in system programming and high-performance computing by directly manipulating memory and hardware. 2) Widely used: shine in the fields of game development, embedded systems, etc. 3) Continuous evolution: Since its release in 1983, C has continued to add new features to maintain its competitiveness.

The future development trends of C and XML are: 1) C will introduce new features such as modules, concepts and coroutines through the C 20 and C 23 standards to improve programming efficiency and security; 2) XML will continue to occupy an important position in data exchange and configuration files, but will face the challenges of JSON and YAML, and will develop in a more concise and easy-to-parse direction, such as the improvements of XMLSchema1.1 and XPath3.1.

The modern C design model uses new features of C 11 and beyond to help build more flexible and efficient software. 1) Use lambda expressions and std::function to simplify observer pattern. 2) Optimize performance through mobile semantics and perfect forwarding. 3) Intelligent pointers ensure type safety and resource management.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

WebStorm Mac version
Useful JavaScript development tools

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

Dreamweaver Mac version
Visual web development tools

Zend Studio 13.0.1
Powerful PHP integrated development environment

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.