In the field of data structures, vector is a growable class array of specific objects. The vector class is a legacy class and is fully compatible with collections. In the java.util package, the List interface can use all the methods listed here. The initial capacity here is 10, and the general method is −
Vector<E> v = new Vector<E>();
The compare() method accepts two parameters and then uses Java environment logic to compare.
Algorithm for sorting 2D arrays by left diagonal
Here is the particular algorithm to sort the 2D array across left diagonal.
Step one - start.
Step 2 - Traverse all left diagonals one by one.
Step 3 − Add elements on that left diagonal in the vector.
Step 4 - Process these vectors.
Step 5 - Sort again.
Step 6 − Push them back from vector to left diagonal.
Step 7 - Remove all vectors so that the set is empty.
Step 8 - Start a fresh sort again.
Step 9 - Repeat all steps again.
Step 10 - Work your way through all the left diagonal lines.
Step 11 - Terminate the process.
Syntax for sorting a 2D array on the left diagonal
Here we have some specific syntax to take some 2D array along the left diagonal as shown below:
A. removeAll():
Syntax:
Vector.removeAll(Vectors As Value) It is used to remove all the elements from the vector.
B. Collections.sort():
Syntax:
Collections.sort(Vectors As Value) This method is used to sort the vector in a process.
C. add():
Syntax:
Vector.add(Value as the integer value) It is used to add some elements in the vector.
D. get():
Syntax:
Vector.get(3); This method used to store the vector element at a pricular index.
In these particular syntaxes, we try to sort some 2D arrays along the left diagonal.
Method to sort 2D array left diagonally
Method 1 - Java program to sort 2D array according to left diagonal
Method 2 - Java program to sort 2D matrix in decreasing diagonal order
Method 3 - Java program to sort a 2D matrix diagonally and get its sum
Java program: Sort 2D array according to the left diagonal
In this Java code we have tried to show how to sort a 2D array across the left diagonal in a general manner.
The Chinese translation ofExample 1
is:Example 1
import java.io.*; import java.lang.*; import java.util.*; public class ARBRDD { public static void main(String[] args) throws java.lang.Exception{ int[][] arr = { { 5, 2, 0, 7, 1 }, { 3, 4, 2, 9, 14 }, { 5, 1, 3, 5, 2 }, { 4, 2, 6, 2, 1 }, { 0, 6, 3, 5, 1 }, { 1, 4, 7, 2, 8 } }; System.out.println("Matrix without sorting data is here ----> \n"); for (int i = 0; i < 5; i++) { for (int j = 0; j < 5; j++) { System.out.print(arr[i][j] + " "); } System.out.println(); } Vector<Integer> v = new Vector<>(); for (int i = 0; i < 5; i++) { v.add(arr[i][i]); } Collections.sort(v); for (int j = 0; j < 5; j++) { arr[j][j] = v.get(j); } System.out.println("Matrix after sorting data is here ----> \n"); for (int i = 0; i < 5; i++) { for (int j = 0; j < 5; j++) { System.out.print(arr[i][j] + " "); } System.out.println(); } } }
Output
Matrix without sorting data is here ----> 5 2 0 7 1 3 4 2 9 14 5 1 3 5 2 4 2 6 2 1 0 6 3 5 1 Matrix after sorting data is here ----> 1 2 0 7 1 3 2 2 9 14 5 1 3 5 2 4 2 6 4 1 0 6 3 5 5
Java program to sort 2D matrix in decreasing diagonal order
In this Java code, we try to show how to sort a 2D array matrix along the left diagonal in a descending manner.
The Chinese translation ofExample 2
is:Example 2
import java.io.*; import java.util.*; public class ARBRDD { public static void diagonalSort(ArrayList<ArrayList<Integer> > mat){ int row = mat.size(); int col = mat.get(0).size(); ArrayList<ArrayList<Integer> > Neg = new ArrayList<ArrayList<Integer> >(); ArrayList<ArrayList<Integer> > Pos = new ArrayList<ArrayList<Integer> >(); int i, j; for (i = 0; i < row; i++) { ArrayList<Integer> temp = new ArrayList<Integer>(); Neg.add(temp); } for (j = 0; j < col; j++) { ArrayList<Integer> temp = new ArrayList<Integer>(); Pos.add(temp); } for (i = 0; i < row; i++) { for (j = 0; j < col; j++) { if (j < i) { Neg.get(i - j).add(mat.get(i).get(j)); } else if (i < j) { Pos.get(j - i).add(mat.get(i).get(j)); } else { Pos.get(0).add(mat.get(i).get(j)); } } } for (i = 0; i < row; i++) { Collections.sort(Neg.get(i)); ; } for (i = 0; i < col; i++) { Collections.sort(Pos.get(i)); ; } for (i = 0; i < row; i++) { for (j = 0; j < col; j++) { if (j < i) { int d = i - j; int l = Neg.get(d).size(); mat.get(i).set(j, Neg.get(d).get(l - 1)); Neg.get(d).remove(l - 1); } else if (i < j) { int d = j - i; int l = Pos.get(d).size(); mat.get(i).set(j, Pos.get(d).get(l - 1)); Pos.get(d).remove(l - 1); } else { int l = Pos.get(0).size(); mat.get(i).set(j, Pos.get(0).get(l - 1)); Pos.get(0).remove(l - 1); } } } for (i = 0; i < row; i++) { for (j = 0; j < col; j++) { System.out.print(mat.get(i).get(j) + " "); } System.out.println(); } } public static void main(String[] args){ ArrayList<ArrayList<Integer> > arr = new ArrayList<ArrayList<Integer> >(); ArrayList<Integer> row1 = new ArrayList<Integer>(); row1.add(10); row1.add(2); row1.add(3); arr.add(row1); ArrayList<Integer> row2 = new ArrayList<Integer>(); row2.add(4); row2.add(5); row2.add(6); arr.add(row2); ArrayList<Integer> row3 = new ArrayList<Integer>(); row3.add(7); row3.add(8); row3.add(9); arr.add(row3); diagonalSort(arr); } }
Output
10 6 3 8 9 2 7 4 5
Java program to sort a 2D matrix diagonally and get its sum
In this Java code, we try to show how to sort a 2D array matrix along the left diagonal and get its sum.
Example 3
import java.util.*; public class ARBRDD{ public static void main(String args[]){ Scanner sc = new Scanner(System.in); int i,j,row,col,sum=0; System.out.println("Enter the number of rows ---->:"); row = sc.nextInt(); System.out.println("Enter the number of columns---->:"); col = sc.nextInt(); int[][] mat = new int[row][col]; System.out.println("Enter the elements of the matrix: -----@") ; for(i=0;i<row;i++){ for(j=0;j<col;j++){ mat[i][j] = sc.nextInt(); } } System.out.println("####The elements of the matrix we get####") ; for(i=0;i<row;i++){ for(j=0;j<col;j++){ System.out.print(mat[i][j]+"\t"); } System.out.println(""); } for(i=0;i<row;i++){ for(j=0;j<col;j++){ if(i==j) { sum = sum + mat[i][j]; } } } System.out.printf("Sum of the diagonal elements of the matrix is here = "+sum) ; } }
Output
Enter the number of rows ---->: 3 Enter the number of columns---->: 3 Enter the elements of the matrix: -----@ 1 2 3 4 5 6 7 8 9 ####The elements of the matrix#### 1 2 3 4 5 6 7 8 9 Sum of the diagonal elements of the matrix is here = 15
in conclusion
In this article, we discussed in detail the problem of sorting 2D arrays. Today we use various sorting methods based on the above grammar and algorithm to solve this problem. Hopefully, through this article, you will be able to get a broad understanding of the problem of how to sort a 2D array by using left diagonal in Java environment.
The above is the detailed content of Java program to sort 2D array left diagonally. For more information, please follow other related articles on the PHP Chinese website!

The class loader ensures the consistency and compatibility of Java programs on different platforms through unified class file format, dynamic loading, parent delegation model and platform-independent bytecode, and achieves platform independence.

The code generated by the Java compiler is platform-independent, but the code that is ultimately executed is platform-specific. 1. Java source code is compiled into platform-independent bytecode. 2. The JVM converts bytecode into machine code for a specific platform, ensuring cross-platform operation but performance may be different.

Multithreading is important in modern programming because it can improve program responsiveness and resource utilization and handle complex concurrent tasks. JVM ensures the consistency and efficiency of multithreads on different operating systems through thread mapping, scheduling mechanism and synchronization lock mechanism.

Java's platform independence means that the code written can run on any platform with JVM installed without modification. 1) Java source code is compiled into bytecode, 2) Bytecode is interpreted and executed by the JVM, 3) The JVM provides memory management and garbage collection functions to ensure that the program runs on different operating systems.

Javaapplicationscanindeedencounterplatform-specificissuesdespitetheJVM'sabstraction.Reasonsinclude:1)Nativecodeandlibraries,2)Operatingsystemdifferences,3)JVMimplementationvariations,and4)Hardwaredependencies.Tomitigatethese,developersshould:1)Conduc

Cloud computing significantly improves Java's platform independence. 1) Java code is compiled into bytecode and executed by the JVM on different operating systems to ensure cross-platform operation. 2) Use Docker and Kubernetes to deploy Java applications to improve portability and scalability.

Java'splatformindependenceallowsdeveloperstowritecodeonceandrunitonanydeviceorOSwithaJVM.Thisisachievedthroughcompilingtobytecode,whichtheJVMinterpretsorcompilesatruntime.ThisfeaturehassignificantlyboostedJava'sadoptionduetocross-platformdeployment,s

Containerization technologies such as Docker enhance rather than replace Java's platform independence. 1) Ensure consistency across environments, 2) Manage dependencies, including specific JVM versions, 3) Simplify the deployment process to make Java applications more adaptable and manageable.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

Atom editor mac version download
The most popular open source editor

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.