search
HomeBackend DevelopmentPython TutorialHow to calculate the determinant of a matrix or ndArray using numpy in Python?

How to calculate the determinant of a matrix or ndArray using numpy in Python?

In this article, we will learn how to calculate the determinant of a matrix using the numpy library in Python. The determinant of a matrix is ​​a scalar value that can represent the matrix in compact form. It is a useful quantity in linear algebra and has numerous applications in various fields including physics, engineering, and computer science.

In this article, we will first discuss the definition and properties of determinants. We will then learn how to use numpy to calculate the determinant of a matrix and see how it is used in practice through some examples.

Definition and properties of determinant

The determinant of a matrix is ​​a scalar value that can be used to describe the properties of a matrix in a compact form. It is often denoted by either |A| or det(A), where A is the matrix. determinant is a fundamental concept in linear algebra and has several important properties that make it a powerful tool in mathematical calculations.

  • One of the most striking properties of the determinant is that it is equal to the product of the eigenvalues ​​of the matrix. Eigenvalues ​​are a special set of scalar values ​​that represent how a matrix acts on certain vectors, and play a crucial role in many applications of linear algebra.

  • Another important property of the determinant is that it is equal to the product of the diagonal elements of an upper triangular matrix or a lower triangular matrix. A triangular matrix is ​​a matrix with zeros above or below the diagonal. This property is very useful when calculating the determinant of a large matrix.

  • The determinant can also be calculated by multiplying the sum of the elements in any row or column with the appropriate sign. This property provides an alternative method of computing the determinant and is helpful when the matrix is ​​not triangular.

  • In addition, the determinant can be calculated by multiplying the elements on the main diagonal of the matrix and dividing by the determinant of the cofactor, submatrix, or adjoint matrix. These matrices are derived from the original matrices and have unique properties that help calculate the determinant.

Use numpy to calculate the determinant of a matrix

Using numpy to calculate the determinant of a matrix, we can use the linalg.det() function. This function accepts a matrix as input and returns the determinant of the matrix. Let’s see an example −

import numpy as np
# create a 2x2 matrix
matrix = np.array([[5, 6], [7, 8]])
# calculate the determinant of the matrix
determinant = np.linalg.det(matrix)
print(determinant)

Output

<font face="Liberation Mono, Consolas, Menlo, Courier, monospace"><span style="font-size: 14px;">-2.000000000000005</span></font>

Code explanation

As you can see, the linalg.det() function calculates the determinant of a matrix and returns it as a scalar value. In this case, the determinant of the matrix is ​​-2.0.

Calculate the determinant of a high-dimensional matrix

To calculate the determinant of a high-dimensional matrix, we can use the same linalg.det() function. Let’s see an example −

import numpy as np
# create a 3x3 singular matrix
matrix = np.array([[20, 21, 22], [23, 24, 25], [26, 27, 28]])
# calculate the determinant of the matrix
determinant = np.linalg.det(matrix)
print(determinant)

Output

2.131628207280298e-14

Code explanation

As you can see, the linalg.det() function can also be used to calculate the determinant of high-dimensional matrices. In this case, the determinant of the matrix is ​​0.0.

Calculate the determinant of a singular matrix

A singular matrix is ​​a matrix without an inverse matrix. The determinant of a singular matrix is ​​0, which means it is not invertible. Let’s look at an example −

The Chinese translation of

Example 1

is:

Example 1

In the following example, the linalg.det() function returns 0 for a singular matrix, which means it is not invertible.

import numpy as np
# create a 3x3 matrix
matrix = np.array([[10, 11, 12], [13, 14, 15], [16, 17, 18]])
# calculate the determinant of the matrix
determinant = np.linalg.det(matrix)
print(determinant)

Output

0.0
The Chinese translation of

Example 2

is:

Example 2

linalg.slogdet() function returns the sign of the matrix and the logarithm of the determinant. The determinant is calculated using the LU decomposition method, which is more stable and accurate than the method used by the linalg.det() function.

One advantage of using the linalg.slogdet() function is that it is more stable and accurate than the linalg.det() function, especially for large matrices. However, remember that it returns the logarithm of the determinant, so you need to exponentiate the result to get the actual determinant

import numpy as np
# create a 3x3 matrix
matrix = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
# calculate the determinant of the matrix using the linalg.slogdet() function
sign, determinant = np.linalg.slogdet(matrix)
print(determinant)

Output

-inf

in conclusion

This article teaches us how to use Python numpy to calculate the determinant of a matrix. We looked at the definition and properties of determinants, and how to use the linalg.det() function to calculate the determinant of a matrix. We also looked at some examples to see how it works in practice. We also learned how to calculate the determinant of a matrix using numpy in Python.

The determinant is a scalar value that can be used to represent a matrix in a concise form. It has many applications in various fields. To calculate the determinant of a matrix using numpy, we can use the linalg.det() function, which accepts a matrix as input and returns the determinant. Alternatively, we can use the linalg.slogdet() function, which returns the sign and logarithm of the determinant using the LU decomposition method. Both functions make it easy to calculate the determinant of a matrix in Python, and they are useful tools for working with matrices in scientific and engineering applications.

The above is the detailed content of How to calculate the determinant of a matrix or ndArray using numpy in Python?. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:tutorialspoint. If there is any infringement, please contact admin@php.cn delete
怎么更新numpy版本怎么更新numpy版本Nov 28, 2023 pm 05:50 PM

更新numpy版本方法:1、使用“pip install --upgrade numpy”命令;2、使用的是Python 3.x版本,使用“pip3 install --upgrade numpy”命令,将会下载并安装,覆盖当前的NumPy版本;3、若使用的是conda来管理Python环境,使用“conda install --update numpy”命令更新即可。

numpy版本推荐使用哪个版本numpy版本推荐使用哪个版本Nov 22, 2023 pm 04:58 PM

推荐使用最新版本的NumPy1.21.2。原因是:目前,NumPy的最新稳定版本是1.21.2。通常情况下,推荐使用最新版本的NumPy,因为它包含了最新的功能和性能优化,并且修复了之前版本中的一些问题和错误。

python numpy中linspace函数怎么使用python numpy中linspace函数怎么使用May 01, 2023 am 09:34 AM

pythonnumpy中linspace函数numpy提供linspace函数(有时也称为np.linspace)是python中创建数值序列工具。与Numpyarange函数类似,生成结构与Numpy数组类似的均匀分布的数值序列。两者虽有些差异,但大多数人更愿意使用linspace函数,其很好理解,但我们需要去学习如何使用。本文我们学习linspace函数及其他语法,并通过示例解释具体参数。最后也顺便提及np.linspace和np.arange之间的差异。1.快速了解通过定义均匀间隔创建数值

如何查看numpy版本如何查看numpy版本Nov 21, 2023 pm 04:12 PM

查看numpy版本的方法:1、使用命令行查看版本,这将打印出当前版本;2、使用Python脚本查看版本,将在控制台输出当前版本;3、使用Jupyter Notebook查看版本,将在输出单元格中显示当前版本;4、使用Anaconda Navigator查看版本,在已安装的软件包列表中,可以找到其版本;5、在Python交互式环境中查看版本,将直接输出当前安装的版本。

numpy增加维度怎么弄numpy增加维度怎么弄Nov 22, 2023 am 11:48 AM

numpy增加维度的方法:1、使用“np.newaxis”增加维度,“np.newaxis”是一个特殊的索引值,用于在指定位置插入一个新的维度,可以通过在对应的位置使用np.newaxis来增加维度;2、使用“np.expand_dims()”增加维度,“np.expand_dims()”函数可以在指定的位置插入一个新的维度,用于增加数组的维度

numpy怎么安装numpy怎么安装Dec 01, 2023 pm 02:16 PM

numpy可以通过使用pip、conda、源码和Anaconda来安装。详细介绍:1、pip,在命令行中输入pip install numpy即可;2、conda,在命令行中输入conda install numpy即可;3、源码,解压源码包或进入源码目录,在命令行中输入python setup.py build python setup.py install即可。

如何使用Python中的numpy计算矩阵或ndArray的行列式?如何使用Python中的numpy计算矩阵或ndArray的行列式?Aug 18, 2023 pm 11:57 PM

在本文中,我们将学习如何使用Python中的numpy库计算矩阵的行列式。矩阵的行列式是一个可以以紧凑形式表示矩阵的标量值。它是线性代数中一个有用的量,并且在物理学、工程学和计算机科学等各个领域都有多种应用。在本文中,我们首先将讨论行列式的定义和性质。然后我们将学习如何使用numpy计算矩阵的行列式,并通过一些实例来看它在实践中的应用。行列式的定义和性质Thedeterminantofamatrixisascalarvaluethatcanbeusedtodescribethepropertie

使用NumPy在Python中计算给定两个向量的外积使用NumPy在Python中计算给定两个向量的外积Sep 01, 2023 pm 03:41 PM

两个向量的外积是向量A的每个元素与向量B的每个元素相乘得到的矩阵。向量a和b的外积为a⊗b。以下是计算外积的数学公式。a⊗b=[a[0]*b,a[1]*b,...,a[m-1]*b]哪里,a,b是向量。表示两个向量的逐元素乘法。外积的输出是一个矩阵,其中i和j是矩阵的元素,其中第i行是通过将向量‘a’的第i个元素乘以向量‘b’的第i个元素得到的向量。使用Numpy计算外积在Numpy中,我们有一个名为outer()的函数,用于计算两个向量的外积。语法下面是outer()函数的语法-np.oute

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Tools

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Powerful PHP integrated development environment