Home >Backend Development >Golang >Golang image manipulation: Learn how to perform histogram equalization and global thresholding of images

Golang image manipulation: Learn how to perform histogram equalization and global thresholding of images

王林
王林Original
2023-08-18 14:49:52740browse

Golang image manipulation: Learn how to perform histogram equalization and global thresholding of images

Golang image operation: learn how to perform histogram equalization and global thresholding of images

Introduction:
Image processing is a field of computer vision and image processing one of the important tasks. In practical applications, we often need to perform some image enhancement operations to improve the quality of the image or highlight certain features in the image. This article will introduce how to use Golang to perform histogram equalization and global thresholding operations on images to achieve image enhancement.

1. Histogram equalization
Histogram equalization is a commonly used image enhancement method. It enhances the contrast of the image by adjusting the grayscale distribution of the image pixels. In this method, we first calculate the cumulative histogram of the image, and then adjust the pixel values ​​of the image based on the cumulative histogram.

The following is a simple Golang code example for implementing histogram equalization of images:

package main

import (
    "fmt"
    "image"
    "image/color"
    "image/jpeg"
    "os"
)

func main() {
    // 打开图片文件
    file, err := os.Open("input.jpg")
    if err != nil {
        fmt.Println(err)
        return
    }
    defer file.Close()

    // 解码图片
    img, _, err := image.Decode(file)
    if err != nil {
        fmt.Println(err)
        return
    }

    // 计算直方图
    hist := histogram(img)

    // 计算累积直方图
    cumHist := cumulativeHistogram(hist)

    // 根据累积直方图对图像进行像素值调整
    newImg := adjustPixels(img, cumHist)

    // 保存处理后的图像
    outFile, err := os.Create("output.jpg")
    if err != nil {
        fmt.Println(err)
        return
    }
    defer outFile.Close()

    // 编码图像
    err = jpeg.Encode(outFile, newImg, &jpeg.Options{Quality: 100})
    if err != nil {
        fmt.Println(err)
        return
    }

    fmt.Println("图像处理完成!")
}

// 计算直方图
func histogram(img image.Image) []int {
    bounds := img.Bounds()
    w, h := bounds.Max.X, bounds.Max.Y
    hist := make([]int, 256)

    for y := 0; y < h; y++ {
        for x := 0; x < w; x++ {
            r, _, _, _ := img.At(x, y).RGBA()
            gray := color.Gray{uint8(r / 256)}
            hist[gray.Y]++
        }
    }

    return hist
}

// 计算累积直方图
func cumulativeHistogram(hist []int) []int {
    cumHist := make([]int, len(hist))
    cumHist[0] = hist[0]

    for i := 1; i < len(hist); i++ {
        cumHist[i] = cumHist[i-1] + hist[i]
    }

    return cumHist
}

// 根据累积直方图调整像素值
func adjustPixels(img image.Image, cumHist []int) image.Image {
    bounds := img.Bounds()
    w, h := bounds.Max.X, bounds.Max.Y
    newImg := image.NewRGBA(bounds)

    for y := 0; y < h; y++ {
        for x := 0; x < w; x++ {
            r, g, b, a := img.At(x, y).RGBA()

            gray := color.Gray{uint8(r / 256)}
            val := uint8(float64(cumHist[gray.Y]) / float64(w*h) * 255)

            newImg.Set(x, y, color.RGBA{val, val, val, uint8(a / 256)})
        }
    }

    return newImg
}

In the above code, we first pass the image package The ##Decode function decodes the input image file into an object of type image.Image. Then, we call the histogram function to calculate the histogram of the image, and the cumulativeHistogram function to calculate the cumulative histogram of the image. Finally, we adjust the pixel values ​​of the image based on the cumulative histogram and save the processed image to a file using the Encode function of the jpeg package.

2. Global thresholding

Global thresholding is a simple but effective image binarization method. It divides the pixel value of the image into two non-overlapping smooth areas, representing the target respectively. Objects and background. This method is typically applied to images with clear foreground and background differences.

The following is a simple Golang code example for global thresholding of images:

package main

import (
    "fmt"
    "image"
    "image/color"
    "image/jpeg"
    "os"
)

func main() {
    // 打开图片文件
    file, err := os.Open("input.jpg")
    if err != nil {
        fmt.Println(err)
        return
    }
    defer file.Close()

    // 解码图片
    img, _, err := image.Decode(file)
    if err != nil {
        fmt.Println(err)
        return
    }

    // 根据全局阈值对图像进行二值化处理
    newImg := binarize(img)

    // 保存处理后的图像
    outFile, err := os.Create("output.jpg")
    if err != nil {
        fmt.Println(err)
        return
    }
    defer outFile.Close()

    // 编码图像
    err = jpeg.Encode(outFile, newImg, &jpeg.Options{Quality: 100})
    if err != nil {
        fmt.Println(err)
        return
    }

    fmt.Println("图像处理完成!")
}

// 根据全局阈值对图像进行二值化处理
func binarize(img image.Image) image.Image {
    bounds := img.Bounds()
    w, h := bounds.Max.X, bounds.Max.Y
    newImg := image.NewRGBA(bounds)

    threshold := calculateThreshold(img)

    for y := 0; y < h; y++ {
        for x := 0; x < w; x++ {
            r, g, b, a := img.At(x, y).RGBA()

            gray := color.Gray{uint8(r / 256)}
            var val uint8
            if gray.Y > threshold {
                val = 255
            } else {
                val = 0
            }

            newImg.Set(x, y, color.RGBA{val, val, val, uint8(a / 256)})
        }
    }

    return newImg
}

// 根据图像的直方图计算全局阈值
func calculateThreshold(img image.Image) uint8 {
    hist := histogram(img)
    totalPixels := img.Bounds().Max.X * img.Bounds().Max.Y

    // 计算背景像素值的总和
    var bgSum, bgCount, fgSum, fgCount int
    for i := 0; i < len(hist); i++ {
        if i <= 128 {
            bgSum += i * hist[i]
            bgCount += hist[i]
        } else {
            fgSum += i * hist[i]
            fgCount += hist[i]
        }
    }

    // 计算背景和前景的平均灰度值
    bgMean := bgSum / bgCount
    fgMean := fgSum / fgCount

    // 根据背景和前景的平均灰度值计算阈值
    return uint8((bgMean + fgMean) / 2)
}

// 计算直方图
func histogram(img image.Image) []int {
    bounds := img.Bounds()
    w, h := bounds.Max.X, bounds.Max.Y
    hist := make([]int, 256)

    for y := 0; y < h; y++ {
        for x := 0; x < w; x++ {
            r, _, _, _ := img.At(x, y).RGBA()
            gray := color.Gray{uint8(r / 256)}
            hist[gray.Y]++
        }
    }

    return hist
}

In the above code, we first pass the ## of the

image package The #Decode function decodes the input image file into an object of type image.Image. Then, we call the calculateThreshold function to calculate the global threshold of the image. Finally, we binarize the image based on a global threshold and save the processed image to a file using the Encode function of the jpeg package. Summary:

In this article we introduce how to use Golang to perform histogram equalization and global thresholding operations on images. Histogram equalization can be used to improve the contrast of the image, making the image clearer and more distinct; global thresholding can be used to convert the image into a binary image to highlight the target objects in the image. By flexibly using these two methods, we can achieve image enhancement and feature extraction to meet various application needs. In practical applications, we can combine other image processing algorithms to further improve the effect and quality of image processing.

The above is the detailed content of Golang image manipulation: Learn how to perform histogram equalization and global thresholding of images. For more information, please follow other related articles on the PHP Chinese website!

Statement:
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn