search
HomeBackend DevelopmentGolangHow to do parallax and depth analysis on images using Golang

How to do parallax and depth analysis on images using Golang

How to use Golang to perform parallax and depth analysis on images

Introduction: Parallax and depth analysis are important technologies in the field of computer vision and can be used to achieve depth perception, Virtual reality and other applications. In this article, we will introduce how to use Golang to perform parallax and depth analysis on images and provide corresponding code examples.

  1. Background

Parallax and depth analysis uses the difference between the surface texture and contour of the object in the image to calculate the depth and position information of the object. This information is very important for realizing applications such as 3D reconstruction, virtual reality and augmented reality.

Golang is a powerful programming language with concurrency performance advantages and a good ecosystem. By using Golang, we can easily process image data and use parallax and depth analysis algorithms to process images.

Next, we will introduce how to use Golang to implement parallax and depth analysis.

  1. Image processing preparation

Before starting, we need to install Golang's image processing library. There are many choices for Golang's image processing libraries, such as gocv, goimage, goimagemagick, etc. This article chooses to use the gocv library, which is the Golang version of OpenCV.

First, execute the following command in the terminal to install the gocv library:

go get -u -d gocv.io/x/gocv
cd $GOPATH/src/gocv.io/x/gocv
make install

After the installation is completed, we can introduce the gocv library into the code and start the image processing operation.

  1. Disparity and depth analysis algorithm

The disparity and depth analysis algorithm mainly includes two steps: stereo matching and image segmentation. Here, we will use the stereo matching algorithm in OpenCV to calculate the disparity map, and then obtain the depth information of the object through depth analysis.

First, we need to load the original image and grayscale it:

import (
    "image"
    "image/color"

    "gocv.io/x/gocv"
)

func main() {
    img := gocv.IMRead("image.jpg", gocv.IMReadColor)
    gray := gocv.NewMat()
    defer gray.Close()

    gocv.CvtColor(img, &gray, gocv.ColorBGRToGray)
}

Next, we can use the stereo matching algorithm to calculate the disparity map. OpenCV provides the implementation of several stereo matching algorithms, and you can choose different algorithms according to your needs. Here we choose to use the BM algorithm:

import (
    //...

    "gocv.io/x/gocv"
)

func main() {
    //...

    disparity := gocv.NewMat()
    defer disparity.Close()

    bm := gocv.NewStereoBM(gocv.StereoBMTypeBasic)

    bm.Compute(grayL, grayR, &disparity)
}

Among them, grayL and grayR represent the grayscale image data of the left and right eyes respectively. StereoBMTypeBasic is an implementation of the BM algorithm, and other types can be selected as needed.

Finally, we can use the depth analysis algorithm to calculate the depth information of the object:

import (
    "fmt"

    "gocv.io/x/gocv"
)

func main() {
    //...

    depth := gocv.NewMat()
    defer depth.Close()

    disparity.ConvertTo(&depth, gocv.MatTypeCV16U)
    scaleFactor := 1.0 / 16.0
    depth.MultiplyFloat(scaleFactor)
    fmt.Println("Depth Matrix:", depth.ToBytes())
}

Here, we convert the disparity map into a depth map and pass MultiplyFloat()Method to zoom. Finally, the byte array of the depth map can be obtained through the depth.ToBytes() method.

  1. Conclusion

This article introduces how to use Golang to perform parallax and depth analysis on images. By using Golang's image processing library gocv, we can easily implement disparity and depth analysis algorithms and obtain depth map information. In practical applications, we can implement various interesting applications based on this information, such as 3D reconstruction, virtual reality, etc.

By reading this article, I believe that readers have a preliminary understanding of how to use Golang to perform parallax and depth analysis of images, and have a certain understanding of writing related codes. It is hoped that readers can in-depth study and apply these technologies through their own practice and contribute to the development of the field of computer vision.

The above is the detailed content of How to do parallax and depth analysis on images using Golang. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
go语言有没有缩进go语言有没有缩进Dec 01, 2022 pm 06:54 PM

go语言有缩进。在go语言中,缩进直接使用gofmt工具格式化即可(gofmt使用tab进行缩进);gofmt工具会以标准样式的缩进和垂直对齐方式对源代码进行格式化,甚至必要情况下注释也会重新格式化。

聊聊Golang中的几种常用基本数据类型聊聊Golang中的几种常用基本数据类型Jun 30, 2022 am 11:34 AM

本篇文章带大家了解一下golang 的几种常用的基本数据类型,如整型,浮点型,字符,字符串,布尔型等,并介绍了一些常用的类型转换操作。

go语言为什么叫gogo语言为什么叫goNov 28, 2022 pm 06:19 PM

go语言叫go的原因:想表达这门语言的运行速度、开发速度、学习速度(develop)都像gopher一样快。gopher是一种生活在加拿大的小动物,go的吉祥物就是这个小动物,它的中文名叫做囊地鼠,它们最大的特点就是挖洞速度特别快,当然可能不止是挖洞啦。

一文详解Go中的并发【20 张动图演示】一文详解Go中的并发【20 张动图演示】Sep 08, 2022 am 10:48 AM

Go语言中各种并发模式看起来是怎样的?下面本篇文章就通过20 张动图为你演示 Go 并发,希望对大家有所帮助!

tidb是go语言么tidb是go语言么Dec 02, 2022 pm 06:24 PM

是,TiDB采用go语言编写。TiDB是一个分布式NewSQL数据库;它支持水平弹性扩展、ACID事务、标准SQL、MySQL语法和MySQL协议,具有数据强一致的高可用特性。TiDB架构中的PD储存了集群的元信息,如key在哪个TiKV节点;PD还负责集群的负载均衡以及数据分片等。PD通过内嵌etcd来支持数据分布和容错;PD采用go语言编写。

聊聊Golang自带的HttpClient超时机制聊聊Golang自带的HttpClient超时机制Nov 18, 2022 pm 08:25 PM

​在写 Go 的过程中经常对比这两种语言的特性,踩了不少坑,也发现了不少有意思的地方,下面本篇就来聊聊 Go 自带的 HttpClient 的超时机制,希望对大家有所帮助。

go语言是否需要编译go语言是否需要编译Dec 01, 2022 pm 07:06 PM

go语言需要编译。Go语言是编译型的静态语言,是一门需要编译才能运行的编程语言,也就说Go语言程序在运行之前需要通过编译器生成二进制机器码(二进制的可执行文件),随后二进制文件才能在目标机器上运行。

golang map怎么删除元素golang map怎么删除元素Dec 08, 2022 pm 06:26 PM

删除map元素的两种方法:1、使用delete()函数从map中删除指定键值对,语法“delete(map, 键名)”;2、重新创建一个新的map对象,可以清空map中的所有元素,语法“var mapname map[keytype]valuetype”。

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Repo: How To Revive Teammates
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

DVWA

DVWA

Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

Atom editor mac version download

Atom editor mac version download

The most popular open source editor

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool

SecLists

SecLists

SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.