search
HomeBackend DevelopmentPython TutorialPandas+Pyecharts | Hospital drug sales data visualization


In this issue, we analyze the drug sales data of a hospital within half a year to see which drugs the hospital purchases There are more people buying medicine on those days, etc. I hope it will be helpful to my friends.
Involved libraries:
  • Pandas — Data processing

  • ##Pyecharts — Data visualization

  • collections — Data statistics

Visualization part:

  • ##Line — Line chart
  • Bar — Bar chart
  • # #Calendar— Calendar Chart
  • ##stylecloud — Word cloud diagram
  • ##Get to the point~~

1. Import module

##
import jieba
import stylecloud
import pandas as pd
from PIL import Image
from collections import Counter
from pyecharts.charts import Geo
from pyecharts.charts import Bar
from pyecharts.charts import Line
from pyecharts.charts import Pie
from pyecharts.charts import Calendar
from pyecharts.charts import WordCloud
from pyecharts import options as opts
from pyecharts.commons.utils import JsCode
from pyecharts.globals import ThemeType,SymbolType,ChartType

##2. Pandas data processing

#2.1 Read Get data

df = pd.read_excel("医院药品销售数据.xlsx")

Result:

Pandas+Pyecharts | Hospital drug sales data visualization
2.2 Data size

##

df.shape
(6578, 7)

A total of

6578 pieces of drug purchase data.

2.3 查看索引、数据类型和内存信息 

df.info()
部分列存在数据缺失。

2.4 统计空值数据 

df.isnull().sum()

Pandas+Pyecharts | Hospital drug sales data visualization

2.5 输出空行 

df[df.isnull().T.any()]
Pandas+Pyecharts | Hospital drug sales data visualization
因为购药时间在后面的分析中会用到,所以我们将购药时间为空的行删除,社保卡号用"000"填充,社保卡号、商品编码为一串数字,应为str类型,销售数量应为int类型:
df1 = df.copy()
df1 = df1.dropna(subset=['购药时间'])
df1[df1.isnull().T.any()]
df1['社保卡号'].fillna('0000', inplace=True)
df1['社保卡号'] = df1['社保卡号'].astype(str)
df1['商品编码'] = df1['商品编码'].astype(str)
df1['销售数量'] = df1['销售数量'].astype(int)
Pandas+Pyecharts | Hospital drug sales data visualization

2.6 销售数量,应收金额,实收金额三列的统计情况 

df1[['销售数量','应收金额','实收金额']].describe()
Pandas+Pyecharts | Hospital drug sales data visualization
数据中存在负值,显然不合理,我们将其转换为正值:
df2 = df1.copy()
df2['销售数量'] = df2['销售数量'].abs()
df2['应收金额'] = df2['应收金额'].abs()
df2['实收金额'] = df2['实收金额'].abs()
Pandas+Pyecharts | Hospital drug sales data visualization

2.7 列拆分(购药时间列拆分为两列)

df3 = df2.copy()
df3[['购药日期', '星期']] = df3['购药时间'].str.split(' ', 2, expand = True)
df3 = df3[['购药日期', '星期','社保卡号','商品编码', '商品名称', '销售数量', '应收金额', '实收金额' ]]

Pandas+Pyecharts | Hospital drug sales data visualization


3. Pyecharts数据可视化

3.1 一周各天药品销量柱状图 

代码:

color_js = """new echarts.graphic.LinearGradient(0, 1, 0, 0,
    [{offset: 0, color: '#FFFFFF'}, {offset: 1, color: '#ed1941'}], false)"""

g1 = df3.groupby('星期').sum()
x_data = list(g1.index)
y_data = g1['销售数量'].values.tolist()
b1 = (
        Bar()
        .add_xaxis(x_data)
        .add_yaxis('',y_data ,itemstyle_opts=opts.ItemStyleOpts(color=JsCode(color_js)))
        .set_global_opts(title_opts=opts.TitleOpts(title='一周各天药品销量',pos_top='2%',pos_left = 'center'),
            legend_opts=opts.LegendOpts(is_show=False),
            xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=-15)),
            yaxis_opts=opts.AxisOpts(name="销量",name_location='middle',name_gap=50,name_textstyle_opts=opts.TextStyleOpts(font_size=16)))

    )
b1.render_notebook()

Pandas+Pyecharts | Hospital drug sales data visualization

每天销量整理相差不大,周五、周六偏于购药高峰

3.2 药品销量前十柱状图 

代码:

color_js = """new echarts.graphic.LinearGradient(0, 1, 0, 0,
    [{offset: 0, color: '#FFFFFF'}, {offset: 1, color: '#08519c'}], false)"""

g2 = df3.groupby('商品名称').sum().sort_values(by='销售数量', ascending=False)
x_data = list(g2.index)[:10]
y_data = g2['销售数量'].values.tolist()[:10]
b2 = (
        Bar()
        .add_xaxis(x_data)
        .add_yaxis('',y_data ,itemstyle_opts=opts.ItemStyleOpts(color=JsCode(color_js)))
        .set_global_opts(title_opts=opts.TitleOpts(title='药品销量前十',pos_top='2%',pos_left = 'center'),
            legend_opts=opts.LegendOpts(is_show=False),
            xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=-15)),
            yaxis_opts=opts.AxisOpts(name="销量",name_location='middle',name_gap=50,name_textstyle_opts=opts.TextStyleOpts(font_size=16)))

    )
b2.render_notebook()
Pandas+Pyecharts | Hospital drug sales data visualization

可以看出:苯磺 酸氨氯地平片(安内真)开博通酒石酸美托洛尔片(倍他乐克)等治疗高血压、心绞痛药物购买量比较多。。

3.3 Top ten drug sales bar chart

Pandas+Pyecharts | Hospital drug sales data visualization

##Sales are basically proportional to sales volume.
3.4 Order volume per week

Pandas+Pyecharts | Hospital drug sales data visualization

#From the data distribution of each day of the week,
Every daythe sales volume is not much different, Friday and Saturday tend to be the peak of drug purchase .
3.5 Number of orders per day in a natural month

Pandas+Pyecharts | Hospital drug sales data visualization

# #It can be seen that the 5th, 15th and 25th are the peak periods for drug sales, especially the 15th of each month.
3.6 Calendar chart
The calendar chart can more intuitively see the sales volume per day and week within a month :

Pandas+Pyecharts | Hospital drug sales data visualization##3.6 Drug Name Word Cloud

Pandas+Pyecharts | Hospital drug sales data visualization


Due to space reasons, some codes are not fully displayed. If necessary, they can be obtained below, also Can be run online (including all code data files)

https:/ /www.heywhale.com/mw/project/61b83bd9c63c620017c629bc

##

The above is the detailed content of Pandas+Pyecharts | Hospital drug sales data visualization. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:Python当打之年. If there is any infringement, please contact admin@php.cn delete
详细讲解Python之Seaborn(数据可视化)详细讲解Python之Seaborn(数据可视化)Apr 21, 2022 pm 06:08 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于Seaborn的相关问题,包括了数据可视化处理的散点图、折线图、条形图等等内容,下面一起来看一下,希望对大家有帮助。

详细了解Python进程池与进程锁详细了解Python进程池与进程锁May 10, 2022 pm 06:11 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于进程池与进程锁的相关问题,包括进程池的创建模块,进程池函数等等内容,下面一起来看一下,希望对大家有帮助。

Python自动化实践之筛选简历Python自动化实践之筛选简历Jun 07, 2022 pm 06:59 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于简历筛选的相关问题,包括了定义 ReadDoc 类用以读取 word 文件以及定义 search_word 函数用以筛选的相关内容,下面一起来看一下,希望对大家有帮助。

归纳总结Python标准库归纳总结Python标准库May 03, 2022 am 09:00 AM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于标准库总结的相关问题,下面一起来看一下,希望对大家有帮助。

分享10款高效的VSCode插件,总有一款能够惊艳到你!!分享10款高效的VSCode插件,总有一款能够惊艳到你!!Mar 09, 2021 am 10:15 AM

VS Code的确是一款非常热门、有强大用户基础的一款开发工具。本文给大家介绍一下10款高效、好用的插件,能够让原本单薄的VS Code如虎添翼,开发效率顿时提升到一个新的阶段。

Python数据类型详解之字符串、数字Python数据类型详解之字符串、数字Apr 27, 2022 pm 07:27 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于数据类型之字符串、数字的相关问题,下面一起来看一下,希望对大家有帮助。

python中文是什么意思python中文是什么意思Jun 24, 2019 pm 02:22 PM

pythn的中文意思是巨蟒、蟒蛇。1989年圣诞节期间,Guido van Rossum在家闲的没事干,为了跟朋友庆祝圣诞节,决定发明一种全新的脚本语言。他很喜欢一个肥皂剧叫Monty Python,所以便把这门语言叫做python。

详细介绍python的numpy模块详细介绍python的numpy模块May 19, 2022 am 11:43 AM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于numpy模块的相关问题,Numpy是Numerical Python extensions的缩写,字面意思是Python数值计算扩展,下面一起来看一下,希望对大家有帮助。

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Repo: How To Revive Teammates
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

VSCode Windows 64-bit Download

VSCode Windows 64-bit Download

A free and powerful IDE editor launched by Microsoft