Home >Backend Development >Python Tutorial >Pandas+Pyecharts | Electronic product sales data analysis visualization + user RFM portrait

Pandas+Pyecharts | Electronic product sales data analysis visualization + user RFM portrait

Python当打之年
Python当打之年forward
2023-08-08 17:00:341350browse

This issue uses python to analyze a electronic product sales data, take a look :

  • ##Monthly order quantity order amount

  • Daily order quantity distribution

  • ##Male and female users Order ratio

  • Female/Male Purchase Products TOP20

  • Order quantity for each age group

  • User RFM level portrait

  • ##Wait...

  • # I hope it will be helpful to everyone. If you have any questions or areas that need improvement, please contact the editor.

Involved libraries:

Pandas
—Data processingPyecharts
—Data Visualization

1. Import module

import pandas as pd
from pyecharts.charts import Line
from pyecharts.charts import Bar
from pyecharts.charts import Pie
from pyecharts.charts import Grid
from pyecharts.charts import PictorialBar
from pyecharts import options as opts
from pyecharts.commons.utils import JsCode
import warnings
warnings.filterwarnings('ignore')
##2. Pandas data processing

##2.1 Read data

df = pd.read_csv("电子产品销售分析.csv")

Pandas+Pyecharts | Electronic product sales data analysis visualization + user RFM portrait
2.2 Data information

df.info()

一共有564169条数据,其中category_code、brand两列有部分数据缺失。

2.3 去掉部分用不到的列

df1 = df[['event_time', 'order_id', 'category_code', 'brand', 'price', 'user_id', 'age', 'sex', 'local']]
df1.shape

(564169, 9)

2.4 去除重复数据

df1 = df1.drop_duplicates()
df1.shape
(556456, 9)

2.5 增加部分时间列

df1['event_time'] = pd.to_datetime(df1['event_time'].str[:19],format="%Y-%m-%d %H:%M:%S")
df1['Year'] = df1['event_time'].dt.year
df1['Month'] = df1['event_time'].dt.month
df1['Day'] = df1['event_time'].dt.day
df1['hour'] = df1['event_time'].dt.hour
df1.head(10)
Pandas+Pyecharts | Electronic product sales data analysis visualization + user RFM portrait

2.6 过滤数据,也可以选择均值填充

df1 = df1.dropna(subset=['category_code'])
df1 = df1[(df1["Year"] == 2020)&(df1["price"] > 0)]
df1.shape
(429261, 13)
2.7 对年龄分组
df1['age_group'] = pd.cut(df1['age'],[10,20,30,40,50],labels=['10-20','20-30','30-40','40-50'])
2.8 增加商品一、二级分类
df1["category_code_1"] = df1["category_code"].apply(lambda x: x.split(".")[0] if "." in x else x)
df1["category_code_2"] = df1["category_code"].apply(lambda x: x.split(".")[-1] if "." in x else x)
df1.head(10)
Pandas+Pyecharts | Electronic product sales data analysis visualization + user RFM portrait
数据处理后还有87678个用户429261条数据。


3. Pyecharts数据可视化

3.1 每月订单数量订单额
def get_bar1():
    bar1 = (
        Bar()
            .add_xaxis(x_data)
            .add_yaxis("订单数量", y_data1)
            .extend_axis(yaxis=opts.AxisOpts(axislabel_opts=opts.LabelOpts(formatter="{value}万")))
            .set_global_opts(
            legend_opts=opts.LegendOpts(pos_top='25%', pos_left='center'),
            title_opts=opts.TitleOpts(
                title='1-每月订单数量订单额',
                subtitle='-- 制图@公众号:Python当打之年 --',
                pos_top='7%',
                pos_left="center"
            )
        )
    )
    line = (
        Line()
            .add_xaxis(x_data)
            .add_yaxis("订单额", y_data2, yaxis_index=1)
    )
    bar1.overlap(line)
Pandas+Pyecharts | Electronic product sales data analysis visualization + user RFM portrait
  • 下半年的订单量和订单额相对于上半年明显增多
  • 8月份的订单量和订单额达到峰值。

3.2 一月各天订单数量分布
def get_bar2():
    pie1 = (
        Pie()
            .add(
            "",
            datas,
            radius=["13%", "25%"],
            label_opts=opts.LabelOpts(formatter="{b}: {d}%"),
        )
    )
    bar1 = (
        Bar(init_opts=opts.InitOpts(theme='dark', width='1000px', height='600px', bg_color='#0d0735'))
            .add_xaxis(x_data)
            .add_yaxis("", y_data, itemstyle_opts=opts.ItemStyleOpts(color=JsCode(color_function)))
            .set_global_opts(
            legend_opts=opts.LegendOpts(is_show=False),
            title_opts=opts.TitleOpts(
                title='2-一月各天订单数量分布',
                subtitle='-- 制图@公众号:Python当打之年 --',
                pos_top='7%',
                pos_left="center"
            )
        )
    )
    bar1.overlap(pie1)
Pandas+Pyecharts | Electronic product sales data analysis visualization + user RFM portrait
  • 从每天的订单量上看,上中下旬订单量基本持平,占比都在30%以上,上旬和中旬要稍微高一点
3.3 一天各时段订单数量分布
Pandas+Pyecharts | Electronic product sales data analysis visualization + user RFM portrait
  • 从订单时段上看,上午的订单要明显高于下午,占比达到了70.26%,尤其是在早上7:00-11:00之间
3.4 男女用户订单比例

Pandas+Pyecharts | Electronic product sales data analysis visualization + user RFM portrait

  • 男性订单数量占比49.55%,女性订单数量占比50.45%,基本持平

3.5 女性/男性购买商品TOP20

def get_bar3():
    bar1 = (
        Bar()
        .add_xaxis(x_data1)
        .add_yaxis('女性', y_data1,
                   label_opts=opts.LabelOpts(position='right')
                   )
        .set_global_opts(
            title_opts=opts.TitleOpts(
                title='5-女性/男性购买商品TOP20',
                subtitle='-- 制图@公众号:Python当打之年 --',
                pos_top='3%',
                pos_left="center"),
            legend_opts=opts.LegendOpts(pos_left='20%', pos_top='10%')
        )
        .reversal_axis()
    )
    bar2 = (
        Bar()
        .add_xaxis(x_data2)
        .add_yaxis('男性', y_data2,
                   label_opts=opts.LabelOpts(position='right')
                   )
        .set_global_opts(
            legend_opts=opts.LegendOpts(pos_right='25%', pos_top='10%')
        )
        .reversal_axis()
    )
    grid1 = (
        Grid()
        .add(bar1, grid_opts=opts.GridOpts(pos_left='12%', pos_right='50%', pos_top='15%'))
        .add(bar2, grid_opts=opts.GridOpts(pos_left='60%', pos_right='5%', pos_top='15%'))
    )
Pandas+Pyecharts | Electronic product sales data analysis visualization + user RFM portrait
  • 男性女性购买商品TOP20基本一致:smartphone、notebook、refrigerators、headphone等四类商品购买量比较大。
3.6 各年龄段订单数量订单额

Pandas+Pyecharts | Electronic product sales data analysis visualization + user RFM portrait

  • 在10-50年龄段内,随着年龄段的增加,订单量和订单金额也在逐步增大。
  • 细分的话,20-30和40-50这两个年龄段稍高一些。

3.7 各年龄段购买商品TOP10

Pandas+Pyecharts | Electronic product sales data analysis visualization + user RFM portrait

3.8 用户RFM等级画像

RFM模型是衡量客户价值和客户创利能力的重要工具和手段。该模型通过一个客户的近期购买行为(R)、购买的总体频率(F)以及花了多少钱(M)三项指标来描述该客户的价值状况,从而能够更加准确地将成本和精力更精确的花在用户层次身上,实现针对性的营销。

用户分类:

def rfm_func(x):
    level = x.apply(lambda x:"1" if x > 0 else '0')
    RMF = level.R + level.F + level.M
    dic_rfm ={
        '111':'重要价值客户',
        '011':'重要保持客户',
        '101':'重要发展客户',
        '001':'重要挽留客户',
        '110':'一般价值客户',
        '100':'一般发展客户',
        '010':'一般保持客户',
        '000':'一般挽留客户'
    }
    result = dic_rfm[RMF]
    return result

 计算等级:

df_rfm = df1.copy()
df_rfm = df_rfm[['user_id','event_time','price']]
# 时间以当年年底为准
df_rfm['days'] = (pd.to_datetime("2020-12-31")-df_rfm["event_time"]).dt.days
# 计算等级
df_rfm = pd.pivot_table(df_rfm,index="user_id",
                     values=["user_id","days","price"],
                     aggfunc={"user_id":"count","days":"min","price":"sum"})
df_rfm = df_rfm[["days","user_id","price"]]
df_rfm.columns = ["R","F","M"]
df_rfm['RMF'] = df_rfm[['R','F','M']].apply(lambda x:x-x.mean()).apply(rfm_func,axis=1)
df_rfm.head()
Pandas+Pyecharts | Electronic product sales data analysis visualization + user RFM portrait

用户画像:

Pandas+Pyecharts | Electronic product sales data analysis visualization + user RFM portrait

根据RFM模型可将用户分为以下8类:

  • 重要价值客户:最近消费时间近、消费频次和消费金额都很高。
  • 重要保持客户:最近消费时间较远,消费金额和频次都很高。

  • Important development customers: The recent consumption time is relatively recent and the consumption amount is high, but the frequency is not high and the loyalty is not high, very Potential users must be developed with emphasis.

  • Important Customer Retention: Those who recently spent a lot of time and the frequency of consumption is not high, but the amount of consumption is high Users, who may be about to be lost or have already been lost, should be given retention measures.

  • General value customers: recent consumption time, high frequency but low consumption amount. Need to improve their customers unit price.

  • General development customers: The recent consumption time is relatively recent, and the consumption amount and frequency are not high.

  • Generally retain customers: The recent consumption time is far away, the consumption frequency is high, and the consumption amount is not high.

  • General customer retention: The indexes are not high, so you can give up appropriately.

##

The above is the detailed content of Pandas+Pyecharts | Electronic product sales data analysis visualization + user RFM portrait. For more information, please follow other related articles on the PHP Chinese website!

Statement:
This article is reproduced at:Python当打之年. If there is any infringement, please contact admin@php.cn delete