Concurrency and multi-threading techniques for PHP crawlers
Concurrency and multi-thread processing skills of PHP crawlers
Introduction:
With the rapid development of the Internet, a large amount of data information is stored on various websites , obtaining this data has become a requirement in many business scenarios. As a tool for automatically obtaining network information, crawlers are widely used in data collection, search engines, public opinion analysis and other fields. This article will introduce a concurrency and multi-threading processing technique for a PHP-based crawler class, and illustrate its implementation through code examples.
1. The basic structure of the reptile class
Before implementing concurrency and multi-thread processing of the reptile class, let's first take a look at the structure of a basic reptile class.
class Crawler { private $startUrl; public function __construct($startUrl) { $this->startUrl = $startUrl; } public function crawl() { // 获取初始页面的内容 $content = $this->getContent($this->startUrl); // 解析页面内容,获取需要的信息 $data = $this->parseContent($content); // 处理获取到的信息,进行业务逻辑处理或存储 $this->processData($data); // 获取页面中的链接,并递归抓取 $urls = $this->getUrls($content); foreach ($urls as $url) { $content = $this->getContent($url); $data = $this->parseContent($content); $this->processData($data); } } private function getContent($url) { // 发起HTTP请求,获取页面内容 // ... return $content; } private function parseContent($content) { // 解析页面内容,提取需要的信息 // ... return $data; } private function processData($data) { // 处理获取到的信息,进行逻辑处理或存储 // ... } private function getUrls($content) { // 获取页面中的链接 // ... return $urls; } }
In the above code, we first define a Crawler class and pass in a starting URL through the constructor. In the crawl() method, we first obtain the content of the starting page, then parse the page content and extract the required information. Afterwards, we can process the obtained information, such as storing it in a database. Finally, we get the links in the page and recursively crawl other pages.
2. Concurrent processing
Normally, crawlers need to process a large number of URLs, and the IO operations of network requests are very time-consuming. If we use sequential execution, requesting the next one after one request is completed will greatly reduce our crawling efficiency. In order to improve concurrent processing capabilities, we can use PHP's multi-process extension to achieve this.
class ConcurrentCrawler { private $urls; public function __construct($urls) { $this->urls = $urls; } public function crawl() { $workers = []; $urlsNum = count($this->urls); $maxWorkersNum = 10; // 最大进程数 for ($i = 0; $i < $maxWorkersNum; $i++) { $pid = pcntl_fork(); if ($pid == -1) { die('fork failed'); } else if ($pid == 0) { for ($j = $i; $j < $urlsNum; $j += $maxWorkersNum) { $this->processUrl($this->urls[$j]); } exit(); } else { $workers[$pid] = true; } } while (count($workers)) { $pid = pcntl_wait($status, WUNTRACED); if ($status == 0) { unset($workers[$pid]); } else { $workers[$pid] = false; } } } private function processUrl($url) { // 发起HTTP请求,获取页面内容 // ... // 解析页面内容,获取需要的信息 // ... // 处理获取到的信息,进行逻辑处理或存储 // ... } }
In the above code, we first define a ConcurrentCrawler class and pass in a set of URLs that need to be crawled through the constructor. In the crawl() method, we use multi-process method for concurrent processing. By using the pcntl_fork() function, a portion of the URL is processed in each child process, while the parent process is responsible for managing the child process. Finally, wait for the end of all child processes through the pcntl_wait() function.
3. Multi-threaded processing
In addition to using multiple processes for concurrent processing, we can also use PHP's Thread extension to implement multi-threaded processing.
class MultithreadCrawler extends Thread { private $url; public function __construct($url) { $this->url = $url; } public function run() { // 发起HTTP请求,获取页面内容 // ... // 解析页面内容,获取需要的信息 // ... // 处理获取到的信息,进行逻辑处理或存储 // ... } } class Executor { private $urls; public function __construct($urls) { $this->urls = $urls; } public function execute() { $threads = []; foreach ($this->urls as $url) { $thread = new MultithreadCrawler($url); $thread->start(); $threads[] = $thread; } foreach ($threads as $thread) { $thread->join(); } } }
In the above code, we first define a MultithreadCrawler class, which inherits from the Thread class, and rewrites the run() method as the main logic of the thread. In the Executor class, we create multiple threads through a loop and start them for execution. Finally, wait for the end of all threads through the join() method.
Conclusion:
Through the introduction of concurrency and multi-thread processing techniques of PHP crawlers, we can find that both concurrency processing and multi-thread processing can greatly improve the crawler's crawling efficiency. However, in the actual development process, we need to choose the appropriate processing method according to the specific situation. At the same time, in order to ensure the safety of multi-threads or multi-processes, we also need to perform appropriate synchronization operations during processing.
The above is the detailed content of Concurrency and multi-threading techniques for PHP crawlers. For more information, please follow other related articles on the PHP Chinese website!

What’s still popular is the ease of use, flexibility and a strong ecosystem. 1) Ease of use and simple syntax make it the first choice for beginners. 2) Closely integrated with web development, excellent interaction with HTTP requests and database. 3) The huge ecosystem provides a wealth of tools and libraries. 4) Active community and open source nature adapts them to new needs and technology trends.

PHP and Python are both high-level programming languages that are widely used in web development, data processing and automation tasks. 1.PHP is often used to build dynamic websites and content management systems, while Python is often used to build web frameworks and data science. 2.PHP uses echo to output content, Python uses print. 3. Both support object-oriented programming, but the syntax and keywords are different. 4. PHP supports weak type conversion, while Python is more stringent. 5. PHP performance optimization includes using OPcache and asynchronous programming, while Python uses cProfile and asynchronous programming.

PHP is mainly procedural programming, but also supports object-oriented programming (OOP); Python supports a variety of paradigms, including OOP, functional and procedural programming. PHP is suitable for web development, and Python is suitable for a variety of applications such as data analysis and machine learning.

PHP originated in 1994 and was developed by RasmusLerdorf. It was originally used to track website visitors and gradually evolved into a server-side scripting language and was widely used in web development. Python was developed by Guidovan Rossum in the late 1980s and was first released in 1991. It emphasizes code readability and simplicity, and is suitable for scientific computing, data analysis and other fields.

PHP is suitable for web development and rapid prototyping, and Python is suitable for data science and machine learning. 1.PHP is used for dynamic web development, with simple syntax and suitable for rapid development. 2. Python has concise syntax, is suitable for multiple fields, and has a strong library ecosystem.

PHP remains important in the modernization process because it supports a large number of websites and applications and adapts to development needs through frameworks. 1.PHP7 improves performance and introduces new features. 2. Modern frameworks such as Laravel, Symfony and CodeIgniter simplify development and improve code quality. 3. Performance optimization and best practices further improve application efficiency.

PHPhassignificantlyimpactedwebdevelopmentandextendsbeyondit.1)ItpowersmajorplatformslikeWordPressandexcelsindatabaseinteractions.2)PHP'sadaptabilityallowsittoscaleforlargeapplicationsusingframeworkslikeLaravel.3)Beyondweb,PHPisusedincommand-linescrip

PHP type prompts to improve code quality and readability. 1) Scalar type tips: Since PHP7.0, basic data types are allowed to be specified in function parameters, such as int, float, etc. 2) Return type prompt: Ensure the consistency of the function return value type. 3) Union type prompt: Since PHP8.0, multiple types are allowed to be specified in function parameters or return values. 4) Nullable type prompt: Allows to include null values and handle functions that may return null values.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Dreamweaver Mac version
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

WebStorm Mac version
Useful JavaScript development tools