


How does file encryption and decryption in Kirin OS protect your privacy?
How does file encryption and decryption in Kirin OS protect your privacy?
With the development of information technology, our private information is becoming more and more vulnerable to leakage and infringement. In order to protect our privacy, file encryption and decryption have become a common method. In Kirin operating system, we can use the file encryption and decryption functions it provides to protect our privacy and sensitive data. This article will introduce the file encryption and decryption functions in Kirin operating system and give corresponding code examples.
First of all, we need to understand the file encryption and decryption interface provided by Kirin operating system. Kirin operating system provides a set of file encryption and decryption libraries, including commonly used encryption algorithms and decryption algorithms. We can encrypt and decrypt files by calling functions in these libraries. The following is a simple encryption function example:
#include <stdio.h> #include <stdlib.h> #include <string.h> #include <openssl/evp.h> void encrypt_file(const char *input_file, const char *output_file, const char *key) { EVP_CIPHER_CTX *ctx; FILE *input, *output; unsigned char inbuf[1024], outbuf[1024 + EVP_MAX_BLOCK_LENGTH]; int outlen, len, total = 0; // 初始化加密环境 ctx = EVP_CIPHER_CTX_new(); EVP_EncryptInit_ex(ctx, EVP_aes_256_cbc(), NULL, key, NULL); // 打开输入文件 input = fopen(input_file, "rb"); if (!input) { fprintf(stderr, "Failed to open input file: %s ", input_file); return; } // 打开输出文件 output = fopen(output_file, "wb"); if (!output) { fprintf(stderr, "Failed to open output file: %s ", output_file); fclose(input); return; } // 逐块加密数据 while ((len = fread(inbuf, 1, sizeof(inbuf), input)) > 0) { EVP_EncryptUpdate(ctx, outbuf, &outlen, inbuf, len); fwrite(outbuf, 1, outlen, output); total += outlen; } // 结束加密过程 EVP_EncryptFinal_ex(ctx, outbuf, &outlen); fwrite(outbuf, 1, outlen, output); total += outlen; // 清理工作 fclose(input); fclose(output); EVP_CIPHER_CTX_free(ctx); printf("Encryption finished. Encrypted %d bytes. ", total); } int main() { const char *input_file = "plain.txt"; const char *output_file = "encrypted.txt"; const char *key = "abcdefghijklmnop"; // 16字节的密钥 encrypt_file(input_file, output_file, key); return 0; }
The above code demonstrates how to use the file encryption interface in Kirin operating system to encrypt one file into another file. We first need to open the input and output files, then encrypt the input file using the specified key and write the result to the output file. Finally, we need to clean up the relevant resources and output the total number of bytes encrypted. It should be noted that the length of the key needs to meet the requirements of the encryption algorithm.
In addition to file encryption, Kirin operating system also provides file decryption function. The following is a simple decryption function example:
#include <stdio.h> #include <stdlib.h> #include <string.h> #include <openssl/evp.h> void decrypt_file(const char *input_file, const char *output_file, const char *key) { EVP_CIPHER_CTX *ctx; FILE *input, *output; unsigned char inbuf[1024], outbuf[1024 + EVP_MAX_BLOCK_LENGTH]; int outlen, len, total = 0; // 初始化解密环境 ctx = EVP_CIPHER_CTX_new(); EVP_DecryptInit_ex(ctx, EVP_aes_256_cbc(), NULL, key, NULL); // 打开输入文件 input = fopen(input_file, "rb"); if (!input) { fprintf(stderr, "Failed to open input file: %s ", input_file); return; } // 打开输出文件 output = fopen(output_file, "wb"); if (!output) { fprintf(stderr, "Failed to open output file: %s ", output_file); fclose(input); return; } // 逐块解密数据 while ((len = fread(inbuf, 1, sizeof(inbuf), input)) > 0) { EVP_DecryptUpdate(ctx, outbuf, &outlen, inbuf, len); fwrite(outbuf, 1, outlen, output); total += outlen; } // 结束解密过程 EVP_DecryptFinal_ex(ctx, outbuf, &outlen); fwrite(outbuf, 1, outlen, output); total += outlen; // 清理工作 fclose(input); fclose(output); EVP_CIPHER_CTX_free(ctx); printf("Decryption finished. Decrypted %d bytes. ", total); } int main() { const char *input_file = "encrypted.txt"; const char *output_file = "plain.txt"; const char *key = "abcdefghijklmnop"; // 16字节的密钥 decrypt_file(input_file, output_file, key); return 0; }
The above code demonstrates how to use the file decryption interface in Kirin operating system to decrypt an encrypted file into the original file. We first need to open the input file and the output file, then decrypt the input file using the specified key and write the result to the output file. Finally, we need to clean up the relevant resources and output the total number of bytes decrypted.
Through the above sample code, we can use the file encryption and decryption functions in Kirin Operating System to protect our privacy and sensitive data. Please note that in practical applications, we need to pay attention to the generation, storage and management of keys, as well as the selection and parameter settings of encryption algorithms to improve the security of file encryption.
In short, the file encryption and decryption functions in Kirin operating system provide us with a convenient and reliable means to protect privacy. We can flexibly use these functions to strengthen the protection of sensitive data according to our own needs and actual conditions.
The above is the detailed content of How does file encryption and decryption in Kirin OS protect your privacy?. For more information, please follow other related articles on the PHP Chinese website!

The steps to enter Linux recovery mode are: 1. Restart the system and press the specific key to enter the GRUB menu; 2. Select the option with (recoverymode); 3. Select the operation in the recovery mode menu, such as fsck or root. Recovery mode allows you to start the system in single-user mode, perform file system checks and repairs, edit configuration files, and other operations to help solve system problems.

The core components of Linux include the kernel, file system, shell and common tools. 1. The kernel manages hardware resources and provides basic services. 2. The file system organizes and stores data. 3. Shell is the interface for users to interact with the system. 4. Common tools help complete daily tasks.

The basic structure of Linux includes the kernel, file system, and shell. 1) Kernel management hardware resources and use uname-r to view the version. 2) The EXT4 file system supports large files and logs and is created using mkfs.ext4. 3) Shell provides command line interaction such as Bash, and lists files using ls-l.

The key steps in Linux system management and maintenance include: 1) Master the basic knowledge, such as file system structure and user management; 2) Carry out system monitoring and resource management, use top, htop and other tools; 3) Use system logs to troubleshoot, use journalctl and other tools; 4) Write automated scripts and task scheduling, use cron tools; 5) implement security management and protection, configure firewalls through iptables; 6) Carry out performance optimization and best practices, adjust kernel parameters and develop good habits.

Linux maintenance mode is entered by adding init=/bin/bash or single parameters at startup. 1. Enter maintenance mode: Edit the GRUB menu and add startup parameters. 2. Remount the file system to read and write mode: mount-oremount,rw/. 3. Repair the file system: Use the fsck command, such as fsck/dev/sda1. 4. Back up the data and operate with caution to avoid data loss.

This article discusses how to improve Hadoop data processing efficiency on Debian systems. Optimization strategies cover hardware upgrades, operating system parameter adjustments, Hadoop configuration modifications, and the use of efficient algorithms and tools. 1. Hardware resource strengthening ensures that all nodes have consistent hardware configurations, especially paying attention to CPU, memory and network equipment performance. Choosing high-performance hardware components is essential to improve overall processing speed. 2. Operating system tunes file descriptors and network connections: Modify the /etc/security/limits.conf file to increase the upper limit of file descriptors and network connections allowed to be opened at the same time by the system. JVM parameter adjustment: Adjust in hadoop-env.sh file

This guide will guide you to learn how to use Syslog in Debian systems. Syslog is a key service in Linux systems for logging system and application log messages. It helps administrators monitor and analyze system activity to quickly identify and resolve problems. 1. Basic knowledge of Syslog The core functions of Syslog include: centrally collecting and managing log messages; supporting multiple log output formats and target locations (such as files or networks); providing real-time log viewing and filtering functions. 2. Install and configure Syslog (using Rsyslog) The Debian system uses Rsyslog by default. You can install it with the following command: sudoaptupdatesud

When choosing a Hadoop version suitable for Debian system, the following key factors need to be considered: 1. Stability and long-term support: For users who pursue stability and security, it is recommended to choose a Debian stable version, such as Debian11 (Bullseye). This version has been fully tested and has a support cycle of up to five years, which can ensure the stable operation of the system. 2. Package update speed: If you need to use the latest Hadoop features and features, you can consider Debian's unstable version (Sid). However, it should be noted that unstable versions may have compatibility issues and stability risks. 3. Community support and resources: Debian has huge community support, which can provide rich documentation and


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

Dreamweaver Mac version
Visual web development tools

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.