search
HomeBackend DevelopmentPython TutorialHow to use Cython to write high-performance extension modules

How to use Cython to write high-performance extension modules

Aug 03, 2023 pm 12:01 PM
high performancecythonExtension modules

How to use Cython to write high-performance extension modules

Introduction: Python is a simple and easy-to-learn programming language, but due to its interpreted nature, it may not perform well when processing large-scale data and computationally intensive tasks. As expected. Cython is a static compiler that converts Python code into C language. By using the syntax and features of the C programming language in Python, the execution speed of the program can be greatly improved. This article will introduce how to use Cython to write high-performance extension modules, and come with code examples to help readers better understand and apply Cython.

1. Introduction and installation of Cython

Cython is a compiler that converts Python code into C code. It combines the simplicity and flexibility of Python with the efficiency and powerful performance of C. When writing code written in Cython, we can use Python-like syntax, can call Python library functions, and can directly access C data structures and APIs.

First, we need to install Cython. It can be installed through the pip tool:

$ pip install Cython

After the installation is completed, we can start writing high-performance extension modules.

2. Write an extension module written in Cython

The following is a simple example showing how to use Cython to write an extension module that solves the Fibonacci sequence:

  1. Create a file named fibonacci.pyx and write the following code in the file:

    def fibonacci(n):
     if n <= 0:
         return 0
     elif n == 1:
         return 1
     else:
         return fibonacci(n-1) + fibonacci(n-2)
  2. Create a file named setup.py, And write the following code in the file:

    from setuptools import setup
    from Cython.Build import cythonize
    
    setup(
     ext_modules = cythonize("fibonacci.pyx")
    )
  3. Execute the following command in the command line to compile and install:

    $ python setup.py build_ext --inplace

    After the execution is completed, a file named The dynamic link library file of fibonacci.so.

  4. Use this extension module in Python code:

    import fibonacci
    
    result = fibonacci.fibonacci(10)
    print(result)

3. Performance test

In order to verify that it is written in Cython The performance of the extension module is improved compared to pure Python code. Let's conduct a simple performance test. We define a function to calculate the nth number of the Fibonacci sequence, then use pure Python code and an extension module written in Cython to perform the calculation, and compare their execution times.

The following is the test code:

import time
import fibonacci

def test_python(n):
    start = time.time()
    result = fibonacci_python.fibonacci(n)
    end = time.time()
    return result, end - start

def test_cython(n):
    start = time.time()
    result = fibonacci.fibonacci(n)
    end = time.time()
    return result, end - start

n = 30

result_python, time_python = test_python(n)
result_cython, time_cython = test_cython(n)

print("斐波那契数列的第{}个数".format(n))
print("纯Python实现的结果:{}".format(result_python))
print("纯Python实现的执行时间:{}秒".format(time_python))
print("使用Cython编写的扩展模块的结果:{}".format(result_cython))
print("使用Cython编写的扩展模块的执行时间:{}秒".format(time_cython))

After running the test code, we can see that the extension module written in Cython has obvious performance advantages compared to pure Python code, and the execution time is greatly shortened.

Conclusion:

By using Cython to write extension modules, we can give full play to the advantages of C language and improve the execution speed of Python code. When processing large amounts of data and computationally intensive tasks, using Cython can effectively improve program performance. Of course, in actual use, it is necessary to choose appropriate optimization methods according to specific circumstances, such as using C data structures and APIs, utilizing static types, etc.

I hope this article can help readers better apply Cython and write high-performance extension modules.

Reference:

  1. Cython Documentation. https://cython.readthedocs.io/en/latest/
  2. Cython Tutorial. https://cython. org/tutorial.html

The above is the detailed content of How to use Cython to write high-performance extension modules. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Python and Time: Making the Most of Your Study TimePython and Time: Making the Most of Your Study TimeApr 14, 2025 am 12:02 AM

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python: Games, GUIs, and MorePython: Games, GUIs, and MoreApr 13, 2025 am 12:14 AM

Python excels in gaming and GUI development. 1) Game development uses Pygame, providing drawing, audio and other functions, which are suitable for creating 2D games. 2) GUI development can choose Tkinter or PyQt. Tkinter is simple and easy to use, PyQt has rich functions and is suitable for professional development.

Python vs. C  : Applications and Use Cases ComparedPython vs. C : Applications and Use Cases ComparedApr 12, 2025 am 12:01 AM

Python is suitable for data science, web development and automation tasks, while C is suitable for system programming, game development and embedded systems. Python is known for its simplicity and powerful ecosystem, while C is known for its high performance and underlying control capabilities.

The 2-Hour Python Plan: A Realistic ApproachThe 2-Hour Python Plan: A Realistic ApproachApr 11, 2025 am 12:04 AM

You can learn basic programming concepts and skills of Python within 2 hours. 1. Learn variables and data types, 2. Master control flow (conditional statements and loops), 3. Understand the definition and use of functions, 4. Quickly get started with Python programming through simple examples and code snippets.

Python: Exploring Its Primary ApplicationsPython: Exploring Its Primary ApplicationsApr 10, 2025 am 09:41 AM

Python is widely used in the fields of web development, data science, machine learning, automation and scripting. 1) In web development, Django and Flask frameworks simplify the development process. 2) In the fields of data science and machine learning, NumPy, Pandas, Scikit-learn and TensorFlow libraries provide strong support. 3) In terms of automation and scripting, Python is suitable for tasks such as automated testing and system management.

How Much Python Can You Learn in 2 Hours?How Much Python Can You Learn in 2 Hours?Apr 09, 2025 pm 04:33 PM

You can learn the basics of Python within two hours. 1. Learn variables and data types, 2. Master control structures such as if statements and loops, 3. Understand the definition and use of functions. These will help you start writing simple Python programs.

How to teach computer novice programming basics in project and problem-driven methods within 10 hours?How to teach computer novice programming basics in project and problem-driven methods within 10 hours?Apr 02, 2025 am 07:18 AM

How to teach computer novice programming basics within 10 hours? If you only have 10 hours to teach computer novice some programming knowledge, what would you choose to teach...

How to avoid being detected by the browser when using Fiddler Everywhere for man-in-the-middle reading?How to avoid being detected by the browser when using Fiddler Everywhere for man-in-the-middle reading?Apr 02, 2025 am 07:15 AM

How to avoid being detected when using FiddlerEverywhere for man-in-the-middle readings When you use FiddlerEverywhere...

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: How To Unlock Everything In MyRise
1 months agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

VSCode Windows 64-bit Download

VSCode Windows 64-bit Download

A free and powerful IDE editor launched by Microsoft

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

DVWA

DVWA

Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software