How to use Scrapy to build an efficient crawler program
With the advent of the information age, the amount of data on the Internet continues to increase, and the demand for obtaining large amounts of data is also increasing. And crawlers have become one of the best solutions to this need. As an excellent Python crawler framework, Scrapy is efficient, stable and easy to use, and is widely used in various fields. This article will introduce how to use Scrapy to build an efficient crawler program and give code examples.
- The basic structure of the crawler program
Scrapy's crawler program mainly consists of the following components:
- Crawler program: defined How to crawl pages, parse data from them, follow links, etc.
- Project pipeline: Responsible for processing the data extracted from the page by the crawler program and performing subsequent processing, such as storing it in a database or exporting it to a file.
- Downloader middleware: Responsible for processing sending requests and obtaining page content. It can perform operations such as User-Agent settings and proxy IP switching.
- Scheduler: Responsible for managing all requests to be fetched and scheduling them according to certain strategies.
- Downloader: Responsible for downloading the requested page content and returning it to the crawler program.
- Writing a crawler program
In Scrapy, we need to create a new crawler project to write our crawler program. Execute the following command in the command line:
scrapy startproject myspider
This will create a project folder named "myspider" and contain some default files and folders. We can enter the folder and create a new crawler:
cd myspider scrapy genspider example example.com
This will create a crawler named "example" to crawl data from the "example.com" website. We can write specific crawler logic in the generated "example_spider.py" file.
Here is a simple example for crawling news headlines and links on a website.
import scrapy class ExampleSpider(scrapy.Spider): name = 'example' allowed_domains = ['example.com'] start_urls = ['http://www.example.com/news'] def parse(self, response): for news in response.xpath('//div[@class="news-item"]'): yield { 'title': news.xpath('.//h2/text()').get(), 'link': news.xpath('.//a/@href').get(), } next_page = response.xpath('//a[@class="next-page"]/@href').get() if next_page: yield response.follow(next_page, self.parse)
In the above code, we define a crawler class named "ExampleSpider", which contains three attributes: name represents the name of the crawler, allowed_domains represents the domain name that is allowed to crawl the website, and start_urls represents the starting point URL. Then we rewrote the parse method, which parses the web page content, extracts news titles and links, and returns the results using yield.
- Configuring the project pipeline
In Scrapy, we can pipeline the crawled data through the project pipeline. Data can be stored in a database, written to a file, or otherwise processed later.
Open the "settings.py" file in the project folder, find the ITEM_PIPELINES configuration item in it, and uncomment it. Then add the following code:
ITEM_PIPELINES = { 'myspider.pipelines.MyPipeline': 300, }
This will enable the custom pipeline class "my spider.pipelines.MyPipeline" and specify a priority (the lower the number, the higher the priority).
Next, we need to create a pipeline class to process the data. Create a file named "pipelines.py" in the project folder and add the following code:
import json class MyPipeline: def open_spider(self, spider): self.file = open('news.json', 'w') def close_spider(self, spider): self.file.close() def process_item(self, item, spider): line = json.dumps(dict(item)) + " " self.file.write(line) return item
In this example, we define a pipeline class named "MyPipeline" which contains three Methods: open_spider, close_spider and process_item. In the open_spider method, we open a file to store the data. In the close_spider method, we close the file. In the process_item method, we convert the data into JSON format and write it to the file.
- Run the crawler program
After completing the writing of the crawler program and project pipeline, we can execute the following command on the command line to run the crawler program:
scrapy crawl example
This will launch the crawler named "example" and start crawling data. The crawled data will be processed as we defined it in the pipeline class.
The above is the basic process and sample code for using Scrapy to build an efficient crawler program. Of course, Scrapy also offers many other features and options that can be adjusted and extended according to specific needs. I hope this article can help readers better understand and use Scrapy and build efficient crawler programs.
The above is the detailed content of How to use Scrapy to build an efficient crawler program. For more information, please follow other related articles on the PHP Chinese website!

Vue是一款优秀的JavaScript框架,它可以帮助我们快速构建交互性强、高效性好的Web应用程序。Vue3是Vue的最新版本,它引入了很多新的特性和功能。Webpack是目前最流行的JavaScript模块打包器和构建工具之一,它可以帮助我们管理项目中的各种资源。本文就为大家介绍如何使用Webpack打包和构建Vue3应用程序。1.安装Webpack

使用CMake构建Linux内核的配置指南概述在Linux开发中,构建和配置内核是一个重要的环节。对于大多数人来说,使用Kconfig和Makefile是最常见的配置方式。然而,使用CMake来构建和配置Linux内核也是一个灵活且强大的选择。本文将介绍如何使用CMake来构建和配置Linux内核,并附上一些代码示例。安装CMake首先,我们需要安装CMak

在当前的互联网时代,Web应用程序已成为了人们日常生活中不可或缺的一部分,而且在各种应用场景下都有广泛的应用。无论是电商网站、社交媒体、在线教育平台,还是各种SaaS应用程序,都离不开Web应用程序。随着技术的不断更新迭代,Golang越来越受到Web应用程序开发者的喜爱,下面我们就快速了解如何使用Golang构建Web应用程序。一、为什么使用Golang?

在当今科技迅猛发展的时代,智慧医疗逐渐成为医疗行业的新趋势,而医疗健康的数据化和智能化,更是将如何使用PHP构建智能医疗系统变得尤为重要。本文将介绍PHP如何应用于医疗系统的开发,并结合实例详细探讨。一、智能医疗系统的功能特点首先了解智能医疗系统的主要功能特点,有助于我们更加清晰的构建医疗系统。智能医疗系统的主要特点包括:1、大数据分析预测功能:通过对医学数

CakePHP中间件:快速构建可扩展的Web应用程序概述:CakePHP是一个流行的PHP框架,被广泛应用于Web应用程序的开发。其提供了许多功能强大的工具和功能,其中包括中间件。中间件可以帮助我们快速构建和扩展Web应用程序,提高代码的可读性和可维护性。什么是中间件:中间件是在请求被派发给控制器之前或之后执行的一系列操作。它们可以完成许多任务,如身份验证、

使用JavaScript构建在线计算器随着互联网的发展,越来越多的工具和应用开始以在线形式出现。其中,计算器是一类被广泛使用的工具之一。本文将介绍如何使用JavaScript构建一个简单的在线计算器,并提供代码示例。在开始之前,我们需要了解一些基本的HTML和CSS知识。计算器的界面可以使用HTML的表格元素来构建,然后用CSS进行样式设计。以下是一个基本的

基于Swoole构建实时股票交易系统随着互联网技术的发展,股票交易成为了越来越多个人投资者和机构投资者的选择。为了更好地满足投资者的需求,提供更实时、高效的股票交易服务,我们可以借助Swoole这个高性能的PHP扩展来构建一个实时股票交易系统。Swoole是一个基于C语言扩展开发的PHP网络通信框架,它提供了异步、并发、高性能的网络编程特性。使用Swoole

随着城市化进程的不断加快和人民生活水平的不断提高,物业管理行业也逐渐成为一个重要的领域。目前,物业管理系统已经成为了物业公司必备的工具,它可以帮助物业公司提高管理效率,优化服务质量,提升客户满意度。本文将介绍在PHP中构建物业管理系统的相关知识。一、物业管理系统的基本功能1.物业收费管理物业收费管理是物业管理系统的核心功能之一,它涉及到物业管理公司对于物业费


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Dreamweaver CS6
Visual web development tools

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment
