


How to use Linux for memory management and optimization
How to use Linux for memory management and optimization
[Introduction]
In the Linux system, memory management and optimization is a very important topic. Properly managing memory can improve system performance and stability, while memory optimization can maximize the use of system memory resources. This article will introduce how to use Linux for memory management and optimization, and provide some practical code examples.
[1. Memory Management]
1.1 View memory information
In Linux systems, you can use the command "free" to view the system's memory information, including total memory, used memory, and available memory. , cache and swap partitions. The sample code is as follows:
$ free -h
The output is similar to the following:
total used free shared buff/cache available Mem: 7.7G 1.9G 706M 512M 5.1G 5.1G Swap: 2.0G 0B 2.0G
1.2 Clean cache
Sometimes the system caches some data into memory to speed up access. But if memory is tight, you can free up valuable memory space by freeing the cache. The sample code is as follows:
$ sync; echo 1 > /proc/sys/vm/drop_caches
1.3 Release unnecessary memory
Sometimes a process takes up a lot of memory, but it actually does not use the memory. At this time, unnecessary memory can be released through the "malloc_trim" function. The sample code is as follows:
#include <malloc.h> ... void trim_memory() { malloc_trim(0); }
[2. Memory Optimization]
2.1 Using large page memory
In some applications that require large memory continuous space, using large page memory can improve performance and reduce memory fragmentation . Hugepages can be enabled by following these steps. The sample code is as follows:
$ echo "vm.nr_hugepages=128" >> /etc/sysctl.conf $ sysctl -p
2.2 Transparent Huge Pages
Transparent Huge Pages is a kernel feature that can automatically convert small page memory into large page memory to reduce memory overhead. You can enable transparent hugepages by following these steps. The sample code is as follows:
$ echo "always" > /sys/kernel/mm/transparent_hugepage/enabled
2.3 Memory recycling strategy
There are a variety of memory recycling strategies to choose from in the Linux system, which can be adjusted according to specific needs. Common memory recovery strategies include "Lru", "Generally FIFO" and "Buddy". The sample code is as follows:
$ echo "lru" > /sys/kernel/mm/allocstool/lru $ echo "generallyfifo" > /sys/kernel/mm/allocstool/lru $ echo "buddy" > /sys/kernel/mm/allocstool/lru
[Summary]
This article introduces how to use Linux for memory management and optimization, and provides some practical code examples. Properly managing memory and optimizing memory can improve system performance and stability. Hope this article is helpful to you.
The above is the detailed content of How to use Linux for memory management and optimization. For more information, please follow other related articles on the PHP Chinese website!

The basic structure of Linux includes the kernel, file system, and shell. 1) Kernel management hardware resources and use uname-r to view the version. 2) The EXT4 file system supports large files and logs and is created using mkfs.ext4. 3) Shell provides command line interaction such as Bash, and lists files using ls-l.

The key steps in Linux system management and maintenance include: 1) Master the basic knowledge, such as file system structure and user management; 2) Carry out system monitoring and resource management, use top, htop and other tools; 3) Use system logs to troubleshoot, use journalctl and other tools; 4) Write automated scripts and task scheduling, use cron tools; 5) implement security management and protection, configure firewalls through iptables; 6) Carry out performance optimization and best practices, adjust kernel parameters and develop good habits.

Linux maintenance mode is entered by adding init=/bin/bash or single parameters at startup. 1. Enter maintenance mode: Edit the GRUB menu and add startup parameters. 2. Remount the file system to read and write mode: mount-oremount,rw/. 3. Repair the file system: Use the fsck command, such as fsck/dev/sda1. 4. Back up the data and operate with caution to avoid data loss.

This article discusses how to improve Hadoop data processing efficiency on Debian systems. Optimization strategies cover hardware upgrades, operating system parameter adjustments, Hadoop configuration modifications, and the use of efficient algorithms and tools. 1. Hardware resource strengthening ensures that all nodes have consistent hardware configurations, especially paying attention to CPU, memory and network equipment performance. Choosing high-performance hardware components is essential to improve overall processing speed. 2. Operating system tunes file descriptors and network connections: Modify the /etc/security/limits.conf file to increase the upper limit of file descriptors and network connections allowed to be opened at the same time by the system. JVM parameter adjustment: Adjust in hadoop-env.sh file

This guide will guide you to learn how to use Syslog in Debian systems. Syslog is a key service in Linux systems for logging system and application log messages. It helps administrators monitor and analyze system activity to quickly identify and resolve problems. 1. Basic knowledge of Syslog The core functions of Syslog include: centrally collecting and managing log messages; supporting multiple log output formats and target locations (such as files or networks); providing real-time log viewing and filtering functions. 2. Install and configure Syslog (using Rsyslog) The Debian system uses Rsyslog by default. You can install it with the following command: sudoaptupdatesud

When choosing a Hadoop version suitable for Debian system, the following key factors need to be considered: 1. Stability and long-term support: For users who pursue stability and security, it is recommended to choose a Debian stable version, such as Debian11 (Bullseye). This version has been fully tested and has a support cycle of up to five years, which can ensure the stable operation of the system. 2. Package update speed: If you need to use the latest Hadoop features and features, you can consider Debian's unstable version (Sid). However, it should be noted that unstable versions may have compatibility issues and stability risks. 3. Community support and resources: Debian has huge community support, which can provide rich documentation and

This article describes how to use TigerVNC to share files on Debian systems. You need to install the TigerVNC server first and then configure it. 1. Install the TigerVNC server and open the terminal. Update the software package list: sudoaptupdate to install TigerVNC server: sudoaptinstalltigervnc-standalone-servertigervnc-common 2. Configure TigerVNC server to set VNC server password: vncpasswd Start VNC server: vncserver:1-localhostno

Configuring a Debian mail server's firewall is an important step in ensuring server security. The following are several commonly used firewall configuration methods, including the use of iptables and firewalld. Use iptables to configure firewall to install iptables (if not already installed): sudoapt-getupdatesudoapt-getinstalliptablesView current iptables rules: sudoiptables-L configuration


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

SublimeText3 Linux new version
SublimeText3 Linux latest version

Dreamweaver CS6
Visual web development tools

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.