


In embedded products, system startup speed is a very critical indicator. The optimization of system startup speed is usually called "Quick Start
".
To optimize the system startup speed, you must first knowhow to count the system startup time.
The following introduces several methods of counting the time taken by kernel startup, as well as several methods of optimizing kernel startup speed.
1. Startup time-consuming statistics
printk time
Open kernel configuration:
kernel hacking ---> [*] Show timing information on printks
After opening, a timestamp will be displayed in front of each printk
Mainly used to measure various stages of the kernel startup process The time-consuming
initcall_debug
As we all know, kernel
will execute different levels of when it starts initcall
, and the time consumption of each initcall
can also be counted.
在kernel
的cmdline
中加入参数initcall_debug=1
:
initcall_debug=1 setargs_nand=setenv bootargs console=${console} earlyprintk=${earlyprintk} root=${nand_root} initcall_debug=${initcall_debug} init=${init}
开启后,就能打印每个initcall
函数调用及耗时。
bootgraph
内核自带了一个工具用于统计启动时间:scripts/bootgraph.pl
使用该工具需要打开内核配置CONFIG_PRINTK_TIME=y
,并且在cmdline
中加上"initcall_debug=1
"
系统启动之后,执行命令:
dmesg|perl $(kernel_dir)/script/bootgraph.pl > out.svg
用浏览器查看out.svg
文件,可以看到内核启动过程中各个阶段的耗时。
这个工具有点类似于perf
的火焰图,可以统计启动各阶段的耗时。
bootchart
除了内核自带的工具,也有开源的工具可用:bootchart
。
bootchart is an open source software tool used for performance analysis of the Linux startup process. It automatically collects CPU usage, process and other information during the system startup process, and displays the analysis results graphically, which can be used to guide and optimize the system startup process.
Modify kernel cmdline
. Changeinit
to "init=/sbin/bootchartd
".collect information. bootchartd
will collect information from/proc/stat
,/proc/diskstat
,/proc/[pid]/stat
. After processing, save it as abootchart.tgz
fileConvert the image. Use the pybootchartgui.py
tool onpc
to convertbootchart.tgz
tobootchart.png
to facilitate analysis
Finally, pictures will be produced for analysis, for example:

bootchar
is mainly used to measure the time taken from mounting the file system to starting the main application
gpio Oscilloscope
You can find a GPIO
that is idle during system startup and set GPIO## in the appropriate location #level.
measure the time-consuming of the entire startup, or the time-consuming of each stage. This method is also commonly used.
2. Kernel optimization method
kernel has different compression formats, common ones are
gz,
xz,
lzma, etc.
Different compression formats have different decompression speeds. By comparing the startup time and flash occupancy of different compression methods, choose one that meets the actual situation and optimize it.
Loading location
The kernel image can be self-decompressed by kernel
or decompressed by uboot
.
For kernel
self-decompression, if the compressed kernel
conflicts with the decompressed kernel
address, it will be copied first Go to a safe place before unzipping to prevent self-covering. This requires time-consuming copying.
That is, setting the loading address and running address to different addresses can reduce time consumption.
Kernel clipping
Cutting the kernel is necessary. If the kernel image is too large, it will take a long time to decompress the kernel, so the kernel must Cut as much as possible.
Cutting the kernel can reduce the decompression time. Less initialization content will also reduce time consumption.
Therefore, when trimming the kernel, consider removing all unnecessary functions.
Preset lpj value
LPJ
is loops_per_jiffy
, which will be calculated every time it is started Once, but if no modifications are made, the value will be calculated the same every time it is started. You can directly provide the value to skip the calculation.
如下log
所示,有skipped
,lpj
由timer
计算得来,不需要再校准calibrate
了。
[ 0.019918] Calibrating delay loop (skipped), value calculated using timer frequency.. 48.00 BogoMIPS (lpj=240000)
如果没有skipped
,则可以在cmdline
中添加lpj=xxx
进行预设
initcall优化
如前面提到,initcall
耗时是可以打印出来的,在cmdline
中设置initcall_debug=1
,即可打印跟踪所有内核初始化过程中调用的顺序以及耗时。
[ 0.021772] initcall sunxi_pinctrl_init+0x0/0x44 returned 0 after 9765 usecs [ 0.067694] initcall param_sysfs_init+0x0/0x198 returned 0 after 29296 usecs [ 0.070240] initcall genhd_device_init+0x0/0x88 returned 0 after 9765 usecs [ 0.080405] initcall init_scsi+0x0/0x90 returned 0 after 9765 usecs [ 0.090384] initcall mmc_init+0x0/0x84 returned 0 after 9765 usecs
根据打印信息,可以对耗时较多的initcall
进行优化。
内核initcall_module并行
initcall
有很多等级,但比较耗时的是module
。
如果是多核,可以考虑将module_initcall
并行执行来节省时间。
目前内核do_initcalls
是一个一个按照顺序来执行,可以修改成新建内核线程来执行
减少pty/tty个数
加入initcall
打印之后,发现pty/tty init
耗时很多,可减少个数来缩短init
时间。
initcall pty_init+0x0/0x3c4 returned 0 after 239627 usecs initcall chr_dev_init+0x0/0xdc returned 0 after 36581 usecs
内核module
只把必须要加进内核的才编译进内核,其他的编译成模块。
例如将必要的clock
、tty
、pinctrl
等编译进内核
3. Other optimizations
uboot
## If it is aRISC-V architecture, you can consider removing
uboot.
xip:
eXecute In Place. That is, on-chip execution means that the
CPU directly reads the program code from the memory for execution without reading it into the memory.
flash. When the system starts, the program is copied from
flash to
ddr for execution.
xip technology does not need to copy the program to
ddr, so the speed will be very fast.
This technology must be supported by the chip. You can check whether the description of SPI
in the chip manual supports the XIP
function.
4. Summary
The above optimization of system startup speed is ultimately provided by Some ideas, some methods.
To optimize the startup speed, generally speaking requires a deeper understanding of the startup of the entire system.
Optimization is endless, it needs to be optimized according to the goal, taking into account the startup speed and effect.
The above is the detailed content of Very useful speed optimization: make the system start faster. For more information, please follow other related articles on the PHP Chinese website!

The five core components of the Linux operating system are: 1. Kernel, 2. System libraries, 3. System tools, 4. System services, 5. File system. These components work together to ensure the stable and efficient operation of the system, and together form a powerful and flexible operating system.

The five core elements of Linux are: 1. Kernel, 2. Command line interface, 3. File system, 4. Package management, 5. Community and open source. Together, these elements define the nature and functionality of Linux.

Linux user management and security can be achieved through the following steps: 1. Create users and groups, using commands such as sudouseradd-m-gdevelopers-s/bin/bashjohn. 2. Bulkly create users and set password policies, using the for loop and chpasswd commands. 3. Check and fix common errors, home directory and shell settings. 4. Implement best practices such as strong cryptographic policies, regular audits and the principle of minimum authority. 5. Optimize performance, use sudo and adjust PAM module configuration. Through these methods, users can be effectively managed and system security can be improved.

The core operations of Linux file system and process management include file system management and process control. 1) File system operations include creating, deleting, copying and moving files or directories, using commands such as mkdir, rmdir, cp and mv. 2) Process management involves starting, monitoring and killing processes, using commands such as ./my_script.sh&, top and kill.

Shell scripts are powerful tools for automated execution of commands in Linux systems. 1) The shell script executes commands line by line through the interpreter to process variable substitution and conditional judgment. 2) The basic usage includes backup operations, such as using the tar command to back up the directory. 3) Advanced usage involves the use of functions and case statements to manage services. 4) Debugging skills include using set-x to enable debugging mode and set-e to exit when the command fails. 5) Performance optimization is recommended to avoid subshells, use arrays and optimization loops.

Linux is a Unix-based multi-user, multi-tasking operating system that emphasizes simplicity, modularity and openness. Its core functions include: file system: organized in a tree structure, supports multiple file systems such as ext4, XFS, Btrfs, and use df-T to view file system types. Process management: View the process through the ps command, manage the process using PID, involving priority settings and signal processing. Network configuration: Flexible setting of IP addresses and managing network services, and use sudoipaddradd to configure IP. These features are applied in real-life operations through basic commands and advanced script automation, improving efficiency and reducing errors.

The methods to enter Linux maintenance mode include: 1. Edit the GRUB configuration file, add "single" or "1" parameters and update the GRUB configuration; 2. Edit the startup parameters in the GRUB menu, add "single" or "1". Exit maintenance mode only requires restarting the system. With these steps, you can quickly enter maintenance mode when needed and exit safely, ensuring system stability and security.

The core components of Linux include kernel, shell, file system, process management and memory management. 1) Kernel management system resources, 2) shell provides user interaction interface, 3) file system supports multiple formats, 4) Process management is implemented through system calls such as fork, and 5) memory management uses virtual memory technology.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

SublimeText3 Linux new version
SublimeText3 Linux latest version

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.
