How to use the ORM library for data operations in FastAPI
Introduction:
FastAPI is a modern Web framework based on Python. Its design is inspired by Starlette and Pydantic and is a high-performance framework. , especially suitable for building fast, scalable and high-performance RESTful API services. In FastAPI, with the help of the ORM (Object Relational Mapping) library, we can perform database operations more conveniently. This article will guide you how to use the ORM library for data manipulation in FastAPI and provide some code examples.
1. Introduction to ORM library
ORM (Object Relational Mapping) is a technology that maps data in a database into objects. The ORM library allows developers to operate the database by defining an object model without directly writing SQL statements. In FastAPI, commonly used ORM libraries include SQLAlchemy, Peewee, etc. This article uses SQLAlchemy as an example to illustrate.
2. Install and configure SQLAlchemy
Before using SQLAlchemy, we first need to install the SQLAlchemy library. You can install it through the following command:
pip install sqlalchemy
After the installation is completed, we need to set the connection configuration of the database. In FastAPI, you can add the following code to the main.py file:
from sqlalchemy import create_engine from sqlalchemy.orm import declarative_base, sessionmaker SQLALCHEMY_DATABASE_URL = "sqlite:///./test.db" engine = create_engine(SQLALCHEMY_DATABASE_URL) SessionLocal = sessionmaker(autocommit=False, autoflush=False, bind=engine) Base = declarative_base()
In the above code, we created a SQLite database and defined SessionLocal for creating a database session. SQLALCHEMY_DATABASE_URL is the URL of the database connection.
3. Define the data model
Before using ORM for data operations, we need to define the data model. Data models can be defined in the models.py file. Take a sample user model as an example. The example is as follows:
from sqlalchemy import Column, Integer, String from database import Base class User(Base): __tablename__ = "users" id = Column(Integer, primary_key=True, index=True) name = Column(String(50), unique=True, index=True) email = Column(String(50), unique=True, index=True) password = Column(String(100))
In the above code, we define a data model named User and specify the data table name "users". In the data model, we can define the types of each field, etc.
4. Create data tables
Before using ORM for data operations, we need to create the corresponding database table. You can add the following code to the main.py file:
Base.metadata.create_all(bind=engine)
The above code will create tables corresponding to all defined data models in the database.
5. Data operation examples
Taking the user model as an example, we will give some common data operation examples.
-
Query all users
from sqlalchemy.orm import Session from . import models def get_users(db: Session): return db.query(models.User).all()
In the above code, we query all user data and return it.
-
Querying a single user
from sqlalchemy.orm import Session from . import models def get_user_by_id(db: Session, user_id: int): return db.query(models.User).filter(models.User.id == user_id).first()
In the above code, we query the data of a single user by user id and return it.
-
Create User
from sqlalchemy.orm import Session from . import models, schemas def create_user(db: Session, user: schemas.UserCreate): hashed_password = hashlib.sha256(user.password.encode()).hexdigest() db_user = models.User(name=user.name, email=user.email, password=hashed_password) db.add(db_user) db.commit() db.refresh(db_user) return db_user
In the above code, we save the incoming user data to the database and return it.
-
Update user
from sqlalchemy.orm import Session from . import models, schemas def update_user(db: Session, user_id: int, user: schemas.UserUpdate): db_user = db.query(models.User).filter(models.User.id == user_id).first() if user.name: db_user.name = user.name if user.email: db_user.email = user.email if user.password: db_user.password = hashlib.sha256(user.password.encode()).hexdigest() db.commit() db.refresh(db_user) return db_user
In the above code, we save the incoming update data to the database through the user id.
-
Delete User
from sqlalchemy.orm import Session from . import models def delete_user(db: Session, user_id: int): db_user = db.query(models.User).filter(models.User.id == user_id).first() db.delete(db_user) db.commit() return {'message': f"User {user_id} deleted successfully"}
In the above code, we delete user data from the database by user id.
Conclusion:
Through the above code examples, we can see that it is relatively simple to use the ORM library for data operations in FastAPI. With the help of the ORM library, we do not need to write SQL statements directly, but can perform database operations through the object model, making the code more concise and readable. I hope this article will help you use the ORM library for data operations in your FastAPI project.
The above is the detailed content of How to use ORM library for data manipulation in FastAPI. For more information, please follow other related articles on the PHP Chinese website!

TortoiseORM是一个基于Python语言开发的异步ORM框架,可用于Python异步应用程序中管理关系数据库。本文将介绍如何使用TortoiseORM框架来创建、读取、更新和删除数据,同时还将学习如何从关系数据库中执行简单和复杂的查询。准备工作在开始本教程之前,你需要安装Python(建议使用Python3.6+),同时安装TortoiseOR

随着互联网的发展,Web应用程序的开发逐渐得到了广泛应用。而其中最主要的语言之一便是PHP。然而,对于数据的管理处理却一直是开发者面临的难题。为此,ORM成为了数据处理的一个不错的选择。什么是ORM?ORM全称为Object-RelationalMapping(对象关系映射),它是一种通过使用描述对象和数据库之间映射的元数据,将面向对象编程语言程序中的对象

随着Web应用程序的不断发展,相应的Web开发框架也不断涌现。其中Phalcon框架因其高性能和灵活性受到了越来越多开发者的青睐。Phalcon框架提供了许多有用的组件,其中ORM(对象关系映射)被认为是最为重要的之一。本文将介绍如何在Phalcon框架中使用ORM以及一些实际应用示例。什么是ORM首先,我们需要了解什么是ORM。ORM是Object-Rel

对象关系映射(ORM)基础知识:了解DoctrineORM当我们开发应用程序的时候,我们需要对数据库进行操作来存储和获取数据。但是,直接使用原始的数据库查询代码很不方便。我们需要将对象和数据之间建立映射关系,这就是ORM的作用。ORM将对象和数据库表之间自动进行映射和转换,可以轻松地进行数据操作,使得我们的代码更加容易维护。DoctrineORM是PHP

如何使用Hyperf框架进行ORM关系映射引言:Hyperf是一个基于Swoole扩展的高性能的PHP框架,它提供了许多强大的功能和组件,包括ORM(对象关系映射)工具。本文将介绍如何使用Hyperf框架进行ORM关系映射,并提供了具体的代码示例。一、准备工作在开始之前,确保已安装好Hyperf框架,并正确配置了数据库连接信息。二、定义模型在Hyperf框架

1.Hiberante面向对象的ORM,学习成本比较高。2.Mybatis半自动orm框架,需要自己写sql,方便sql与java代码分离。这里所谓的“半自动”是相对于Hibernate框架全表映射而言的,MyBatis框架需要手动匹配提供POJO、SQL和映射关系,而Hibernate框架只需提供POJO和映射关系即可。3.Bee一个新的ORM框架,同时具体Hiberante和Mybatis的优点。既可像Hibernate一样通过操作对象来操作数据库,也可以像Mybatis一样灵活写sql4.

随着现代软件开发的趋势,大部分应用程序都需要与数据库进行交互。传统上,我们需要在代码中显式编写SQL语句来查询或更新数据库。然而,这种方式具有很多缺点,例如不易于维护和容易出错。为了解决这些问题,ORM(对象关系映射)框架应运而生,它允许我们在编写代码的同时,自动执行与数据库的交互。Java语言中有许多ORM框架,它们在不同领域和应用场景中都得到广泛使用。在

Python是一种高级编程语言,可用于Web开发、数据分析、人工智能等领域。在Python开发过程中,ORM(对象关系映射)框架是必不可少的一部分,ORM框架可以帮助我们轻松地将数据库和应用程序之间的数据进行交互。在本文中,我们将以PonyORM框架为例,介绍ORM框架在Python中的应用。PonyORM是Python中一款轻量级的ORM框架,与其他O


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

Atom editor mac version download
The most popular open source editor
