


How to quickly deploy a containerized large-scale data processing platform on Linux?
How to quickly deploy a containerized large-scale data processing platform on Linux?
Overview:
With the advent of the big data era, the demand for data processing is increasing. In order to improve efficiency and save resources, using containerization technology to deploy data processing platforms has become a common choice. This article will introduce how to quickly deploy a containerized large-scale data processing platform on Linux.
Step 1: Install Docker
Docker is a widely used containerization platform. Before deploying the data processing platform on Linux, you need to install Docker. Enter the following command in the terminal to install Docker:
sudo apt-get update sudo apt-get install docker-ce
After the installation is complete, run the following command to verify whether the installation is successful:
docker version
If the Docker version information can be displayed correctly, the installation is successful.
Step 2: Create a Docker image
The data processing platform is usually deployed in the form of a mirror. First, we need to create a Docker image that contains the software and configuration required for the data processing platform. The following is a sample Dockerfile:
FROM ubuntu:latest # 安装所需软件,以下以Hadoop为例 RUN apt-get update && apt-get install -y openjdk-8-jdk RUN wget -q http://apache.mirrors.pair.com/hadoop/common/hadoop-3.1.4/hadoop-3.1.4.tar.gz && tar -xzf hadoop-3.1.4.tar.gz -C /usr/local && ln -s /usr/local/hadoop-3.1.4 /usr/local/hadoop && rm hadoop-3.1.4.tar.gz # 配置环境变量,以及其他所需配置 ENV JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64 ENV HADOOP_HOME=/usr/local/hadoop ENV PATH=$PATH:$JAVA_HOME/bin:$HADOOP_HOME/bin:$HADOOP_HOME/sbin ... # 更多软件安装和配置 # 设置工作目录 WORKDIR /root # 启动时执行的命令 CMD ["bash"]
In the above example, we used Ubuntu as the base image, installed Java and Hadoop, and made some necessary configurations. According to actual needs, you can customize the image according to this template.
In the directory where the Dockerfile is located, run the following command to build the image:
docker build -t data-processing-platform .
After the build is completed, you can run the following command to view the created image:
docker images
Steps Three: Run the container
After the image is created, we need to run the container to deploy the data processing platform. The following is an example startup command:
docker run -itd --name processing-platform --network host data-processing-platform
This command will run a container named processing-platform in background mode on the host, allowing it to share the network with the host.
Step 4: Access the container
After completing the running of the container, you can enter the inside of the container by executing the following command:
docker exec -it processing-platform bash
This will enter the container and you can operate inside the container .
Step 5: Data processing
Now that the container has been successfully run, you can use the data processing platform for data processing. Depending on the specific platform and requirements, corresponding commands or scripts can be run to perform related data processing tasks.
Summary:
Through the above steps, we can quickly deploy a containerized large-scale data processing platform on Linux. First install Docker, then create the Docker image required for the data processing platform, run the container, and perform data processing operations in the container. This container-based deployment method can improve deployment efficiency and resource utilization, and make large-scale data processing more flexible.
The above is an introduction to how to quickly deploy a containerized large-scale data processing platform on Linux. Hope this helps!
The above is the detailed content of How to quickly deploy a containerized large-scale data processing platform on Linux?. For more information, please follow other related articles on the PHP Chinese website!

The five core components of the Linux operating system are: 1. Kernel, 2. System libraries, 3. System tools, 4. System services, 5. File system. These components work together to ensure the stable and efficient operation of the system, and together form a powerful and flexible operating system.

The five core elements of Linux are: 1. Kernel, 2. Command line interface, 3. File system, 4. Package management, 5. Community and open source. Together, these elements define the nature and functionality of Linux.

Linux user management and security can be achieved through the following steps: 1. Create users and groups, using commands such as sudouseradd-m-gdevelopers-s/bin/bashjohn. 2. Bulkly create users and set password policies, using the for loop and chpasswd commands. 3. Check and fix common errors, home directory and shell settings. 4. Implement best practices such as strong cryptographic policies, regular audits and the principle of minimum authority. 5. Optimize performance, use sudo and adjust PAM module configuration. Through these methods, users can be effectively managed and system security can be improved.

The core operations of Linux file system and process management include file system management and process control. 1) File system operations include creating, deleting, copying and moving files or directories, using commands such as mkdir, rmdir, cp and mv. 2) Process management involves starting, monitoring and killing processes, using commands such as ./my_script.sh&, top and kill.

Shell scripts are powerful tools for automated execution of commands in Linux systems. 1) The shell script executes commands line by line through the interpreter to process variable substitution and conditional judgment. 2) The basic usage includes backup operations, such as using the tar command to back up the directory. 3) Advanced usage involves the use of functions and case statements to manage services. 4) Debugging skills include using set-x to enable debugging mode and set-e to exit when the command fails. 5) Performance optimization is recommended to avoid subshells, use arrays and optimization loops.

Linux is a Unix-based multi-user, multi-tasking operating system that emphasizes simplicity, modularity and openness. Its core functions include: file system: organized in a tree structure, supports multiple file systems such as ext4, XFS, Btrfs, and use df-T to view file system types. Process management: View the process through the ps command, manage the process using PID, involving priority settings and signal processing. Network configuration: Flexible setting of IP addresses and managing network services, and use sudoipaddradd to configure IP. These features are applied in real-life operations through basic commands and advanced script automation, improving efficiency and reducing errors.

The methods to enter Linux maintenance mode include: 1. Edit the GRUB configuration file, add "single" or "1" parameters and update the GRUB configuration; 2. Edit the startup parameters in the GRUB menu, add "single" or "1". Exit maintenance mode only requires restarting the system. With these steps, you can quickly enter maintenance mode when needed and exit safely, ensuring system stability and security.

The core components of Linux include kernel, shell, file system, process management and memory management. 1) Kernel management system resources, 2) shell provides user interaction interface, 3) file system supports multiple formats, 4) Process management is implemented through system calls such as fork, and 5) memory management uses virtual memory technology.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

WebStorm Mac version
Useful JavaScript development tools
