search
HomeDatabaseMysql TutorialImproving storage engine throughput: MaxScale application case in MySQL

Improving the throughput of the storage engine: MaxScale application case in MySQL

Introduction:
In the current environment of big data and high concurrency, how to improve the throughput of the database has become a problem for many enterprises and Problems faced by developers. As a commonly used open source relational database, MySQL's performance optimization has always attracted much attention. This article will introduce a method to improve the throughput of MySQL database by using the MaxScale tool, as well as specific application cases.

1. Introduction to MaxScale
MaxScale is an open source database agent tool launched by MariaDB Company to improve the performance, reliability and scalability of the database. It can serve as an intermediate layer between the database and the client, responsible for distributing and routing database requests. MaxScale has features such as load balancing, failover, caching, query routing, and query filtering to increase database throughput without modifying the application.

2. MaxScale application case in MySQL
Suppose we have an online e-commerce platform, and a large number of users are browsing, placing orders, and paying for products every day. Due to the high read and write pressure on the database, we hope to improve the throughput of the database through the MaxScale tool.

  1. Installing MaxScale
    First, we need to install MaxScale. The latest version of MaxScale can be downloaded and installed through the official website. During the installation process, you need to follow the prompts to configure, including specifying the connection information for the MySQL database, etc.
  2. Configuring MaxScale
    The configuration file is located in the MaxScale installation directory, and the default is /etc/maxscale.cnf. After opening the file, we need to perform some configuration, such as specifying the listening port of the database, setting user authentication information, etc. The following is a simple configuration example:
[maxscale]
threads=4
log_info=1

[monitor]
module=mysqlmon
servers=primary,secondary
user=maxscale_user
passwd=maxscale_password

[listener]
type=server
service=db_service
protocol=MySQLClient
port=3306

[db_service]
type=service
router=readconnroute
servers=primary,secondary
user=db_user
passwd=db_password

[primary]
type=server
address=127.0.0.1
port=3306
protocol=MySQLBackend

[secondary]
type=server
address=127.0.0.2
port=3306
protocol=MySQLBackend

In the configuration file, we first define a monitor module to monitor the status of the database. Then a listener module is defined to listen for database connection requests. Then a db_service module is defined, which is used to define database-related parameters and connection pool information. Finally, two server modules are defined, corresponding to the master database and the slave database respectively. Modify the corresponding parameters according to the actual situation.

  1. Start MaxScale
    After completing the configuration, we can start MaxScale by executing the following command:
maxscale -f /etc/maxscale.cnf
  1. Test performance
    Complete the above steps Finally, we can test the effect of MaxScale on improving database throughput through concurrent requests. The following is a simple test code example:
import pymysql
import time
from concurrent.futures import ThreadPoolExecutor

def query_data():
    conn = pymysql.connect(host='127.0.0.1', user='maxscale_user', password='maxscale_password', database='test')
    cursor = conn.cursor()
    cursor.execute('SELECT * FROM table')
    rows = cursor.fetchall()
    conn.close()

def concurrent_test():
    start = time.time()
    executor = ThreadPoolExecutor(max_workers=100)
    futures = []

    for _ in range(1000):
        future = executor.submit(query_data)
        futures.append(future)

    executor.shutdown()

    for future in futures:
        result = future.result()

    end = time.time()
    print('Total time:', end - start)

if __name__ == '__main__':
    concurrent_test()

In the above code, we use Python's concurrent.futures module to implement concurrent requests. By adjusting the max_workers parameters and the number of cycles, you can simulate different concurrency situations.

Through testing, we can observe that after using MaxScale, the throughput of the database has been significantly improved compared to before. This is because MaxScale can automatically distribute requests to different database nodes to achieve load balancing, thus improving the processing capacity of the database.

Conclusion:
By using the MaxScale tool, we can increase the throughput of the MySQL database without modifying the application. MaxScale has functions such as load balancing, failover, caching, query routing, and query filtering, and can be configured and adjusted according to actual application scenarios. In a high-concurrency environment, reasonable use of MaxScale can help us improve the performance and reliability of the database.

Reference materials:

  1. MaxScale official website: https://mariadb.com/products/skysql/maxscale
  2. MaxScale documentation: https://mariadb. com/kb/en/mariadb-maxscale-21/
  3. MySQL official website: https://www.mysql.com/

The above is the detailed content of Improving storage engine throughput: MaxScale application case in MySQL. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
在大数据场景下的MySQL储存引擎选择:MyISAM、InnoDB、Aria对比分析在大数据场景下的MySQL储存引擎选择:MyISAM、InnoDB、Aria对比分析Jul 24, 2023 pm 07:18 PM

在大数据场景下的MySQL储存引擎选择:MyISAM、InnoDB、Aria对比分析随着大数据时代的到来,传统的储存引擎在面对高并发、大数据量的情况下往往无法满足业务需求。MySQL作为最流行的关系型数据库管理系统之一,其储存引擎的选择显得尤为重要。在本文中,我们将对大数据场景下MySQL常用的储存引擎MyISAM、InnoDB、Aria进行对比分析,并给出

提升性能的秘密武器:MySQL Partition储存引擎详解提升性能的秘密武器:MySQL Partition储存引擎详解Jul 25, 2023 am 08:25 AM

提升性能的秘密武器:MySQLPartition储存引擎详解在现代数据库应用中,数据量的增长和查询要求的复杂性常常会对数据库的性能产生很大的挑战。为了应对这些挑战,MySQL提供了一个强大的储存引擎,即MySQLPartition。MySQLPartition允许将大型表分割成更小的子表,以提高查询效率和管理数据。简单来说,MySQLPartitio

提高储存引擎的吞吐量:MaxScale在MySQL中的应用案例提高储存引擎的吞吐量:MaxScale在MySQL中的应用案例Jul 27, 2023 pm 10:05 PM

提高储存引擎的吞吐量:MaxScale在MySQL中的应用案例引言:在当前大数据和高并发的环境下,如何提高数据库的吞吐量成为了许多企业和开发者面临的问题。MySQL作为一款常用的开源关系型数据库,其性能优化一直备受关注。本文将介绍一种通过使用MaxScale工具来提高MySQL数据库吞吐量的方法,以及具体的应用案例。一、MaxScale简介MaxScale是

提高MySQL写入性能的秘诀:选用合适的储存引擎和优化配置提高MySQL写入性能的秘诀:选用合适的储存引擎和优化配置Jul 25, 2023 pm 09:33 PM

提高MySQL写入性能的秘诀:选用合适的存储引擎和优化配置导语:MySQL是一种常用的关系型数据库管理系统,广泛应用于各种规模的应用中。对于需要高性能写入的场景,选用合适的存储引擎和优化配置是提高MySQL写入性能的关键。本文将介绍几个提升MySQL写入性能的秘诀,并附上相应的代码示例。一、选择适合的存储引擎MySQL提供了多种存储引擎,不同的引擎在写入性能

改善MySQL储存引擎的写入性能:探秘Falcon引擎和XtraDB引擎的优势改善MySQL储存引擎的写入性能:探秘Falcon引擎和XtraDB引擎的优势Jul 25, 2023 am 08:34 AM

改善MySQL储存引擎的写入性能:探秘Falcon引擎和XtraDB引擎的优势摘要:在大数据时代,高性能数据库管理系统是关键。MySQL作为最受欢迎的开源数据库之一,其储存引擎在提供高效读写能力方面起着决定性的作用。本文将重点介绍Falcon引擎和XtraDB引擎,探究它们在改善MySQL写入性能方面的优势,并提供相关代码示例。引言:随着数据量的不断增长,M

利用手动分区提高MySQL的储存引擎性能:InnoDB的分区优化利用手动分区提高MySQL的储存引擎性能:InnoDB的分区优化Jul 25, 2023 pm 12:09 PM

利用手动分区提高MySQL的储存引擎性能:InnoDB的分区优化在大规模数据量下,MySQL数据库的性能问题是一个常见的挑战。为了提高数据库的性能,一种常用的方法是使用分区技术。MySQL提供了自动分区,但在某些情况下,手动分区可能更加灵活和高效。InnoDB是MySQL的默认储存引擎,它支持分区来提高查询性能和管理数据。下面将介绍如何使用手动分区来优化In

选择适合的储存引擎以提升应用性能:MySQL InnoDB、MyISAM和NDB对比选择适合的储存引擎以提升应用性能:MySQL InnoDB、MyISAM和NDB对比Jul 26, 2023 am 08:25 AM

选择适合的储存引擎以提升应用性能:MySQLInnoDB、MyISAM和NDB对比引言:储存引擎是MySQL数据库的核心组成部分,它根据不同的需求提供了多种选项,如InnoDB、MyISAM和NDB等。选择适合的储存引擎对于提升应用性能至关重要。本文将比较InnoDB、MyISAM和NDB三种常用的储存引擎,分析它们的特点、适用场景和性能方面的差异。一、I

Java ActiveMQ:揭秘高性能消息中间件的奥秘Java ActiveMQ:揭秘高性能消息中间件的奥秘Feb 19, 2024 pm 02:51 PM

JavaActiveMQ:高性能消息中间件的奥秘JavaActiveMQ是一款开源的消息中间件,旨在为应用程序提供可靠、可扩展、高性能的消息传递机制。本文将从以下几个方面深入探讨JavaActiveMQ的高性能奥秘:1.轻量级核心和异步通信JavaActiveMQ的核心设计思想是轻量级和异步通信。它采用异步消息传递模型,即生产者将消息发送到消息中间件后无需等待消费者立即接收,而是继续执行其他任务。这种异步通信方式大大降低了系统开销,提升了吞吐量。代码示例:importorg.apache.act

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

Repo: How To Revive Teammates
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
1 months agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor