


Teach you step by step how to use Flask to build an ES search engine (Practical)
Start using Flask Build ES search.

#Configuration file
#coding:utf-8 import os DB_USERNAME = 'root' DB_PASSWORD = None # 如果没有密码的话 DB_HOST = '127.0.0.1' DB_PORT = '3306' DB_NAME = 'flask_es' class Config: SECRET_KEY ="随机字符" # 随机 SECRET_KEY SQLALCHEMY_COMMIT_ON_TEARDOWN = True # 自动提交 SQLALCHEMY_TRACK_MODIFICATIONS = True # 自动sql DEBUG = True # debug模式 SQLALCHEMY_DATABASE_URI = 'mysql+pymysql://%s:%s@%s:%s/%s' % (DB_USERNAME, DB_PASSWORD,DB_HOST, DB_PORT, DB_NAME) #数据库URL MAIL_SERVER = 'smtp.qq.com' MAIL_POST = 465 MAIL_USERNAME = '3417947630@qq.com' MAIL_PASSWORD = '邮箱授权码' FLASK_MAIL_SUBJECT_PREFIX='M_KEPLER' FLASK_MAIL_SENDER=MAIL_USERNAME # 默认发送人 # MAIL_USE_SSL = True MAIL_USE_TLS = False MAIL_DEBUG = False ENABLE_THREADS=True
file. Of course, the database connection is not necessary for the current project. I just use Mysql for auxiliary purposes. Partners do not need to configure the connection database, ES is enough. Then the email notification will depend on personal needs...

Logger.py
The log module is an essential part of engineering applications. It is very necessary to output log files according to different production environments. . To use a Jianghu saying: "If there is no log file, you will die without knowing how to die..."
# coding=utf-8 import os import logging import logging.config as log_conf import datetime import coloredlogs coloredlogs.DEFAULT_FIELD_STYLES = {'asctime': {'color': 'green'}, 'hostname': {'color': 'magenta'}, 'levelname': {'color': 'magenta', 'bold': False}, 'name': {'color': 'green'}} log_dir = os.path.dirname(os.path.dirname(__file__)) + '/logs' if not os.path.exists(log_dir): os.mkdir(log_dir) today = datetime.datetime.now().strftime("%Y-%m-%d") log_path = os.path.join(log_dir, today + ".log") log_config = { 'version': 1.0, # 格式输出 'formatters': { 'colored_console': { 'format': "%(asctime)s - %(name)s - %(levelname)s - %(message)s", 'datefmt': '%H:%M:%S' }, 'detail': { 'format': '%(asctime)s - %(name)s - %(levelname)s - %(message)s', 'datefmt': "%Y-%m-%d %H:%M:%S" #时间格式 }, }, 'handlers': { 'console': { 'class': 'logging.StreamHandler', 'level': 'DEBUG', 'formatter': 'colored_console' }, 'file': { 'class': 'logging.handlers.RotatingFileHandler', 'maxBytes': 1024 * 1024 * 1024, 'backupCount': 1, 'filename': log_path, 'level': 'INFO', 'formatter': 'detail', # 'encoding': 'utf-8', # utf8 编码 防止出现编码错误 }, }, 'loggers': { 'logger': { 'handlers': ['console'], 'level': 'DEBUG', }, } } log_conf.dictConfig(log_config) log_v = logging.getLogger('log') coloredlogs.install(level='DEBUG', logger=log_v) # # Some examples. # logger.debug("this is a debugging message") # logger.info("this is an informational message") # logger.warning("this is a warning message") # logger.error("this is an error message") # logger.critical("this is a critical message")
Here is a copy of what I commonly use. The log configuration file can be used as a commonly used log format. It can be called directly and output to the terminal or
.log路由
对于 Flask 项目而言, 蓝图和路由会让整个项目更具观赏性(当然指的是代码的阅读)。
这里我采用两个分支来作为数据支撑,一个是 Math 入口,另一个是 Baike 入口,数据的来源是基于上一篇的百度百科爬虫所得,根据 深度优先 的爬取方式抓取后放入 ES 中。
# coding:utf8 from flask import Flask from flask_sqlalchemy import SQLAlchemy from app.config.config import Config from flask_mail import Mail from flask_wtf.csrf import CSRFProtect app = Flask(__name__,template_folder='templates',static_folder='static') app.config.from_object(Config) db = SQLAlchemy(app) db.init_app(app) csrf = CSRFProtect(app) mail = Mail(app) # 不要在生成db之前导入注册蓝图。 from app.home.baike import baike as baike_blueprint from app.home.math import math as math_blueprint from app.home.home import home as home_blueprint app.register_blueprint(home_blueprint) app.register_blueprint(math_blueprint,url_prefix="/math") app.register_blueprint(baike_blueprint,url_prefix="/baike")
# -*- coding:utf-8 -*- from flask import Blueprint baike = Blueprint("baike", __name__) from app.home.baike import views
# -*- coding:utf-8 -*- from flask import Blueprint math = Blueprint("math", __name__) from app.home.math import views
声明路由并在 __init__ 文件中初始化
下面来看看路由的实现(以Baike为例)
# -*- coding:utf-8 -*- import os from flask_paginate import Pagination, get_page_parameter from app.Logger.logger import log_v from app.elasticsearchClass import elasticSearch from app.home.forms import SearchForm from app.home.baike import baike from flask import request, jsonify, render_template, redirect baike_es = elasticSearch(index_type="baike_data",index_name="baike") @baike.route("/") def index(): searchForm = SearchForm() return render_template('baike/index.html', searchForm=searchForm) @baike.route("/search", methods=['GET', 'POST']) def baikeSearch(): search_key = request.args.get("b", default=None) if search_key: searchForm = SearchForm() log_v.error("[+] Search Keyword: " + search_key) match_data = baike_es.search(search_key,count=30) # 翻页 PER_PAGE = 10 page = request.args.get(get_page_parameter(), type=int, default=1) start = (page - 1) * PER_PAGE end = start + PER_PAGE total = 30 print("最大数据总量:", total) pagination = Pagination(page=page, start=start, end=end, total=total) context = { 'match_data': match_data["hits"]["hits"][start:end], 'pagination': pagination, 'uid_link': "/baike/" } return render_template('data.html', q=search_key, searchForm=searchForm, **context) return redirect('home.index') @baike.route('/<uid>') def baikeSd(uid): base_path = os.path.abspath('app/templates/s_d/') old_file = os.listdir(base_path)[0] old_path = os.path.join(base_path, old_file) file_path = os.path.abspath('app/templates/s_d/{}.html'.format(uid)) if not os.path.exists(file_path): log_v.debug("[-] File does not exist, renaming !!!") os.rename(old_path, file_path) match_data = baike_es.id_get_doc(uid=uid) return render_template('s_d/{}.html'.format(uid), match_data=match_data)
可以看到我们成功的将 elasticSearch 类初始化并且进行了数据搜索。
我们使用了 Flask 的分页插件进行分页并进行了单页数量的限制,根据 Uid 来跳转到详情页中。
细心的小伙伴会发现我这里用了个小技巧
@baike.route('/<uid>') def baikeSd(uid): base_path = os.path.abspath('app/templates/s_d/') old_file = os.listdir(base_path)[0] old_path = os.path.join(base_path, old_file) file_path = os.path.abspath('app/templates/s_d/{}.html'.format(uid)) if not os.path.exists(file_path): log_v.debug("[-] File does not exist, renaming !!!") os.rename(old_path, file_path) match_data = baike_es.id_get_doc(uid=uid) return render_template('s_d/{}.html'.format(uid), match_data=match_data)
以此来保证存放详情页面的模板中始终只保留一个 html 文件。

项目启动
一如既往的采用 flask_script 作为项目的启动方案,确实方便。
# coding:utf8 from app import app from flask_script import Manager, Server manage = Manager(app) # 启动命令 manage.add_command("runserver", Server(use_debugger=True)) if __name__ == "__main__": manage.run()
黑窗口键入
python manage.py runserver
就可以启动项目,默认端口 5000,访问 http://127.0.0.1:5000
使用gunicorn启动
pip install gunicorn
#encoding:utf-8 import multiprocessing from gevent import monkey monkey.patch_all() # 并行工作进程数 workers = multiprocessing.cpu_count() * 2 + 1 debug = True reload = True # 自动重新加载 loglevel = 'debug' # 指定每个工作者的线程数 threads = 2 # 转发为监听端口8000 bind = '0.0.0.0:5001' # 设置守护进程,将进程交给supervisor管理 daemon = 'false' # 工作模式协程 worker_class = 'gevent' # 设置最大并发量 worker_connections = 2000 # 设置进程文件目录 pidfile = 'log/gunicorn.pid' logfile = 'log/debug.log' # 设置访问日志和错误信息日志路径 accesslog = 'log/gunicorn_acess.log' errorlog = 'log/gunicorn_error.log'
利用配置文件来启动 gunicorn 服务器
gunicorn -c gconfig.py manage:app
项目截图
The above is the detailed content of Teach you step by step how to use Flask to build an ES search engine (Practical). For more information, please follow other related articles on the PHP Chinese website!

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

Python and C have significant differences in memory management and control. 1. Python uses automatic memory management, based on reference counting and garbage collection, simplifying the work of programmers. 2.C requires manual management of memory, providing more control but increasing complexity and error risk. Which language to choose should be based on project requirements and team technology stack.

Python's applications in scientific computing include data analysis, machine learning, numerical simulation and visualization. 1.Numpy provides efficient multi-dimensional arrays and mathematical functions. 2. SciPy extends Numpy functionality and provides optimization and linear algebra tools. 3. Pandas is used for data processing and analysis. 4.Matplotlib is used to generate various graphs and visual results.

Whether to choose Python or C depends on project requirements: 1) Python is suitable for rapid development, data science, and scripting because of its concise syntax and rich libraries; 2) C is suitable for scenarios that require high performance and underlying control, such as system programming and game development, because of its compilation and manual memory management.

Python is widely used in data science and machine learning, mainly relying on its simplicity and a powerful library ecosystem. 1) Pandas is used for data processing and analysis, 2) Numpy provides efficient numerical calculations, and 3) Scikit-learn is used for machine learning model construction and optimization, these libraries make Python an ideal tool for data science and machine learning.

Is it enough to learn Python for two hours a day? It depends on your goals and learning methods. 1) Develop a clear learning plan, 2) Select appropriate learning resources and methods, 3) Practice and review and consolidate hands-on practice and review and consolidate, and you can gradually master the basic knowledge and advanced functions of Python during this period.

Key applications of Python in web development include the use of Django and Flask frameworks, API development, data analysis and visualization, machine learning and AI, and performance optimization. 1. Django and Flask framework: Django is suitable for rapid development of complex applications, and Flask is suitable for small or highly customized projects. 2. API development: Use Flask or DjangoRESTFramework to build RESTfulAPI. 3. Data analysis and visualization: Use Python to process data and display it through the web interface. 4. Machine Learning and AI: Python is used to build intelligent web applications. 5. Performance optimization: optimized through asynchronous programming, caching and code

Python is better than C in development efficiency, but C is higher in execution performance. 1. Python's concise syntax and rich libraries improve development efficiency. 2.C's compilation-type characteristics and hardware control improve execution performance. When making a choice, you need to weigh the development speed and execution efficiency based on project needs.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Atom editor mac version download
The most popular open source editor

SublimeText3 Linux new version
SublimeText3 Linux latest version

SublimeText3 Mac version
God-level code editing software (SublimeText3)

SublimeText3 English version
Recommended: Win version, supports code prompts!

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.