search
HomeBackend DevelopmentGolangDNS resolution optimization skills and practice of http.Transport in Go language

DNS resolution optimization skills and practice of http.Transport in Go language

Jul 21, 2023 pm 11:42 PM
optimization techniquesdns resolutionpractice

DNS resolution optimization skills and practice of http.Transport in Go language

Abstract:
When using Go language for network programming, we often need to use http.Transport to handle HTTP requests. In http.Transport, DNS resolution is a very important link, which has a great impact on the response time and overall performance of the request. This article will introduce some tips and practices for optimizing DNS resolution of http.Transport in Go language, and demonstrate it through code examples.

  1. Set DNS cache
    By default, Go language http.Transport does not cache DNS resolution results, and DNS resolution is performed for each request. This can cause increased response times for requests, especially when a large number of requests are made. We can enable caching of DNS resolution by setting the DialContext of http.Transport. The example is as follows:
import (
    "net"
    "net/http"
    "time"
)

func main() {
    transport := &http.Transport{
        DisableKeepAlives: true,
        DialContext: (&net.Dialer{
            Timeout: time.Second * 30,
            KeepAlive: time.Second * 30,
            Resolver: &net.Resolver{
                PreferGo: true,
                Dial: (&net.Dialer{
                    Timeout:   time.Second * 5,
                    KeepAlive: time.Second * 5,
                }).Dial,
            },
        }).DialContext,
    }

    client := &http.Client{
        Timeout:   time.Second * 60,
        Transport: transport,
    }
    
    // 使用client发起HTTP请求
    // ...
}

In the above example, we enable DNS resolution of Go language by setting the Resolver in DialContext to net.Resolver and setting PreferGo to true. Additionally, we set appropriate timeouts, as well as global timeouts and connection keep-alive times.

  1. Use a custom DNS parser
    The Go language's default DNS parser may not be suitable for certain scenarios, such as when resolving a large number of host names. In this case, we can use a custom DNS resolver to improve performance. The following is a simple example using the github.com/miekg/dns library:
import (
    "context"
    "net"
    "net/http"
    "time"

    "github.com/miekg/dns"
)

type CustomDialer struct {
    resolver *dns.Resolver
}

func (d *CustomDialer) DialContext(ctx context.Context, network, address string) (net.Conn, error) {
    host, port, _ := net.SplitHostPort(address)
    msg := new(dns.Msg)
    msg.SetQuestion(dns.Fqdn(host), dns.TypeA)
    in, err := d.resolver.ExchangeContext(ctx, msg, net.JoinHostPort(d.resolver.Preferred()...))
    if err != nil {
        return nil, err
    }
    if len(in.Answer) == 0 {
        return nil, fmt.Errorf("no answer found for %s", host)
    }
    a := in.Answer[0].(*dns.A)
    return (&net.Dialer{
        Timeout:   time.Second * 5,
        KeepAlive: time.Second * 5,
    }).DialContext(ctx, network, net.JoinHostPort(a.A.String(), port))
}

func main() {
    resolver := &dns.Resolver{
        PreferGo: true,
    }

    transport := &http.Transport{
        DisableKeepAlives: true,
        DialContext: (&CustomDialer{
            resolver: resolver,
        }).DialContext,
    }

    client := &http.Client{
        Timeout:   time.Second * 60,
        Transport: transport,
    }
    
    // 使用client发起HTTP请求
    // ...
}

In the above example, we define a CustomDialer type, which implements the DialContext method, using custom DNS resolution processor for analysis. We use the github.com/miekg/dns library to send a DNS request and get the IP address from the returned result, and then use net.Dialer to make the actual connection.

Conclusion:
By optimizing the DNS resolution of http.Transport, we can significantly improve the performance and response time of Go language network programming. In practical applications, appropriate optimization methods can be selected according to the scenario to improve system performance and stability.

Reference link:

  • [Go Documentation](https://golang.org/pkg/net/http/)
  • [github.com/miekg /dns](https://github.com/miekg/dns)

(Note: The above code examples are for reference only. Actual use requires appropriate modifications and adjustments according to the specific situation.)

The above is the detailed content of DNS resolution optimization skills and practice of http.Transport in Go language. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Implementing Mutexes and Locks in Go for Thread SafetyImplementing Mutexes and Locks in Go for Thread SafetyMay 05, 2025 am 12:18 AM

In Go, using mutexes and locks is the key to ensuring thread safety. 1) Use sync.Mutex for mutually exclusive access, 2) Use sync.RWMutex for read and write operations, 3) Use atomic operations for performance optimization. Mastering these tools and their usage skills is essential to writing efficient and reliable concurrent programs.

Benchmarking and Profiling Concurrent Go CodeBenchmarking and Profiling Concurrent Go CodeMay 05, 2025 am 12:18 AM

How to optimize the performance of concurrent Go code? Use Go's built-in tools such as getest, gobench, and pprof for benchmarking and performance analysis. 1) Use the testing package to write benchmarks to evaluate the execution speed of concurrent functions. 2) Use the pprof tool to perform performance analysis and identify bottlenecks in the program. 3) Adjust the garbage collection settings to reduce its impact on performance. 4) Optimize channel operation and limit the number of goroutines to improve efficiency. Through continuous benchmarking and performance analysis, the performance of concurrent Go code can be effectively improved.

Error Handling in Concurrent Go Programs: Avoiding Common PitfallsError Handling in Concurrent Go Programs: Avoiding Common PitfallsMay 05, 2025 am 12:17 AM

The common pitfalls of error handling in concurrent Go programs include: 1. Ensure error propagation, 2. Processing timeout, 3. Aggregation errors, 4. Use context management, 5. Error wrapping, 6. Logging, 7. Testing. These strategies help to effectively handle errors in concurrent environments.

Implicit Interface Implementation in Go: The Power of Duck TypingImplicit Interface Implementation in Go: The Power of Duck TypingMay 05, 2025 am 12:14 AM

ImplicitinterfaceimplementationinGoembodiesducktypingbyallowingtypestosatisfyinterfaceswithoutexplicitdeclaration.1)Itpromotesflexibilityandmodularitybyfocusingonbehavior.2)Challengesincludeupdatingmethodsignaturesandtrackingimplementations.3)Toolsli

Go Error Handling: Best Practices and PatternsGo Error Handling: Best Practices and PatternsMay 04, 2025 am 12:19 AM

In Go programming, ways to effectively manage errors include: 1) using error values ​​instead of exceptions, 2) using error wrapping techniques, 3) defining custom error types, 4) reusing error values ​​for performance, 5) using panic and recovery with caution, 6) ensuring that error messages are clear and consistent, 7) recording error handling strategies, 8) treating errors as first-class citizens, 9) using error channels to handle asynchronous errors. These practices and patterns help write more robust, maintainable and efficient code.

How do you implement concurrency in Go?How do you implement concurrency in Go?May 04, 2025 am 12:13 AM

Implementing concurrency in Go can be achieved by using goroutines and channels. 1) Use goroutines to perform tasks in parallel, such as enjoying music and observing friends at the same time in the example. 2) Securely transfer data between goroutines through channels, such as producer and consumer models. 3) Avoid excessive use of goroutines and deadlocks, and design the system reasonably to optimize concurrent programs.

Building Concurrent Data Structures in GoBuilding Concurrent Data Structures in GoMay 04, 2025 am 12:09 AM

Gooffersmultipleapproachesforbuildingconcurrentdatastructures,includingmutexes,channels,andatomicoperations.1)Mutexesprovidesimplethreadsafetybutcancauseperformancebottlenecks.2)Channelsofferscalabilitybutmayblockiffullorempty.3)Atomicoperationsareef

Comparing Go's Error Handling to Other Programming LanguagesComparing Go's Error Handling to Other Programming LanguagesMay 04, 2025 am 12:09 AM

Go'serrorhandlingisexplicit,treatingerrorsasreturnedvaluesratherthanexceptions,unlikePythonandJava.1)Go'sapproachensureserrorawarenessbutcanleadtoverbosecode.2)PythonandJavauseexceptionsforcleanercodebutmaymisserrors.3)Go'smethodpromotesrobustnessand

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

DVWA

DVWA

Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.