Home >Operation and Maintenance >Nginx >Build a Raspberry Pi monitoring dashboard in less than 30 minutes
You may need a Raspberry Pi dashboard to understand its performance. In this article, I'll demonstrate how to quickly build an on-demand monitoring dashboard to view your Raspberry Pi's CPU performance, memory, and disk usage in real time, and add more views and actions at any time as needed.
If you already use Appsmith, you can also directly import the Sample Application and get started.
Appsmith is an open source Low-code application building tool that helps developers easily and quickly build internal applications such as dashboards and admin panels. It is a great option for dashboards and reduces the time and complexity required by traditional coding methods.
In this example dashboard, I display the following statistics:
You need a way to start from The Raspberry Pi gets this data and passes it to the Appsmith method. psutil is a Python library for monitoring and analysis, while Flask-RESTful is a Flask extension that creates a REST API.
Appsmith calls the REST API every few seconds to automatically refresh the data and responds with a JSON object containing all the required statistics, as shown below:
{ "cpu_count": 4,"cpu_freq": [600.0,600.0,1200.0 ],"cpu_mem_avail": 463953920,"cpu_mem_free": 115789824,"cpu_mem_total": 971063296,"cpu_mem_used": 436252672,"cpu_percent": 1.8,"disk_usage_free": 24678121472,"disk_usage_percent": 17.7,"disk_usage_total": 31307206656,"disk_usage_used": 5292728320,"sensor_temperatures": 52.616 }
If your Raspberry Pi does not already have Python installed, open a terminal on your Raspberry Pi and run this installation command:
$ sudo apt install python3
Now set up a Python for your development Virtual Environment:
$ python -m venv PiData
Next, activate the environment. You must do this after restarting the Raspberry Pi.
$ source PiData/bin/activate$ cd PiData
In order to install Flask, Flask-RESTful and future dependencies, please create a file named requirements.txt
in your Python virtual environment and add the following content Go into it:
flaskflask-restfulgunicorn
Save the files, then use pip
to install them all at once. You must do this after restarting the Raspberry Pi.
(PyData)$ python -m pip install -r requirements.txt
Next, create a file named pi_stats.py
to hold the logic for retrieving Raspberry Pi system statistics using psutil
. Paste the following code into the pi_stats.py
file:
from flask import Flaskfrom flask_restful import Resource, Apiimport psutilapp = Flask(__name__)api = Api(app)class PiData(Resource):def get(self):return "RPI Stat dashboard"api.add_resource(PiData, '/get-stats')if __name__ == '__main__':app.run(debug=True)
The function of this code is as follows:
app = Flask(name)
来定义嵌套 API 对象的应用程序。PiData
定义为具体的 Resource 类 ,以公开每个支持的 HTTP 方法。api.add_resource(PiData, '/get-stats')
将资源 PiData
附加到 API 对象 api
。/get-stats
时,将返回 PiData
作为响应。要从你的树莓派获取统计信息,你可以使用 psutil
提供的这些内置函数:
cpu_percentage
、cpu_count
、cpu_freq
和 sensors_temperatures
函数分别用于获取 CPU 的占用百分比、计数、时钟速度和温度。sensors_temperatures
报告了与树莓派连接的所有设备的温度。要仅获取 CPU 的温度,请使用键 cpu-thermal
。virtual_memory
函数可返回总内存、可用内存、已使用内存和空闲内存的统计信息(以字节为单位)。disk_usage
函数可返回总磁盘空间、已使用空间和可用空间的统计信息(以字节为单位)。将所有函数组合到一个 Python 字典中的示例如下:
system_info_data = {'cpu_percent': psutil.cpu_percent(1),'cpu_count': psutil.cpu_count(),'cpu_freq': psutil.cpu_freq(),'cpu_mem_total': memory.total,'cpu_mem_avail': memory.available,'cpu_mem_used': memory.used,'cpu_mem_free': memory.free,'disk_usage_total': disk.total,'disk_usage_used': disk.used,'disk_usage_free': disk.free,'disk_usage_percent': disk.percent,'sensor_temperatures': psutil.sensors_temperatures()['cpu-thermal'][0].current,}
下一节将使用该字典。
为了在 API 响应中看到来自树莓派的数据,请更新 pi_stats.py
文件,将字典 system_info_data
包含在 PiData
类中:
from flask import Flaskfrom flask_restful import Resource, Apiimport psutilapp = Flask(__name__)api = Api(app)class PiData(Resource):def get(self):memory = psutil.virtual_memory()disk = psutil.disk_usage('/')system_info_data = {'cpu_percent': psutil.cpu_percent(1),'cpu_count': psutil.cpu_count(),'cpu_freq': psutil.cpu_freq(),'cpu_mem_total': memory.total,'cpu_mem_avail': memory.available,'cpu_mem_used': memory.used,'cpu_mem_free': memory.free,'disk_usage_total': disk.total,'disk_usage_used': disk.used,'disk_usage_free': disk.free,'disk_usage_percent': disk.percent,'sensor_temperatures': psutil.sensors_temperatures()['cpu-thermal'][0].current, }return system_info_dataapi.add_resource(PiData, '/get-stats')if __name__ == '__main__':app.run(debug=True)
你的脚本已经就绪,下面运行 PiData.py
:
$ python PyData.py * Serving Flask app "PiData" (lazy loading) * Environment: production WARNING: This is a development server. Do not run this in a production environment. * Debug mode: on * Running on http://127.0.0.1:5000 (Press CTRL+C to quit) * Restarting with stat * Debugger is active!
你有了一个可以工作的 API。
你可以在本地网络中与 API 进行交互。然而,要在互联网上访问它,你必须在防火墙中打开一个端口,并将传入的流量转发到由 Flask 提供的端口。然而,正如你的测试输出建议的那样,在 Flask 中运行 Flask 应用程序仅适用于开发,而不适用于生产。为了安全地将 API 提供给互联网,你可以使用安装过程中安装的 gunicorn
生产服务器。
现在,你可以启动 Flask API。每次重新启动树莓派时都需要执行此操作。
$ gunicorn -w 4 'PyData:app'Serving on http://0.0.0.0:8000
要从外部世界访问你的树莓派,请在网络防火墙中打开一个端口,并将流量定向到你树莓派的 IP 地址,端口为 8000。
首先,获取树莓派的内部 IP 地址:
$ ip addr show | grep inet
内部 IP 地址通常以 10 或 192 或 172 开头。
接下来,你必须配置防火墙。通常,你从互联网服务提供商(ISP)获取的路由器中嵌入了防火墙。通常,你可以通过网络浏览器访问家用路由器。路由器的地址有时会打印在路由器的底部,它以 192.168 或 10 开头。不过,每个设备都不同,因此我无法告诉你需要点击哪些选项来调整设置。关于如何配置防火墙的完整描述,请阅读 Seth Kenlon 的文章 《打开端口并通过你的防火墙路由流量》。
或者,你可以使用 localtunnel 来使用动态端口转发服务。
一旦你的流量到达树莓派,你就可以查询你的 API:
$ curl https://example.com/get-stats{ "cpu_count": 4, "cpu_freq": [600.0,600.0,1200.0 ], "cpu_mem_avail": 386273280, ...
如果你已经执行到这一步,那么最困难的部分已经过去了。
如果你重新启动了树莓派,你必须按照以下步骤进行操作:
source
重新激活 Python 环境pip
刷新应用程序的依赖项gunicorn
启动 Flask 应用程序你的防火墙设置是持久的,但如果你使用了 localtunnel,则必须在重新启动后启动新的隧道。
如果你愿意,可以自动化这些任务,但那是另一个教程的内容。本教程的最后一部分是在 Appsmith 上构建一个用户界面,使用拖放式小部件和一些 JavaScript,将你的树莓派数据绑定到用户界面。相信我,从现在开始很容易!
硬件监控仪表盘
要制作一个像这样的仪表盘,你需要将公开的 API 端点连接到 Appsmith,使用 Appsmith 的小部件库构建用户界面,并将 API 的响应绑定到小部件上。如果你已经使用 Appsmith,你可以直接导入 示例应用程序 并开始使用。
如果你还没有,请 注册 一个免费的 Appsmith 帐户。或者,你可以选择 自托管 Appsmith。
登录到你的 Appsmith 帐户。
localtunnel.me
address, always add /get-stats
at the end to get statistics. Paste it into the first empty field of the page and click the "RUN" button. Make sure you see a successful response in the Response panel.
Appsmith Interface
Appsmith’s interface is very intuitive, but if you feel lost, I recommend checking out Build your first app on Appsmith Tutorial.
Drag the "Text", "Image" and "Divider" widgets on the canvas as titles. Arrange them like this:
Set Project Title
The "Text" widget contains the actual title of your page. Type something cooler than "Raspberry Pi Stats".
The "ImageImage" widget is used to display the unique logo of the dashboard. You can use any logo you like.
Use the "Switch" widget to switch real-time data mode. Getting data from the API you built needs to be configured in the "Property" panel.
For the main section, create a CPU statistics area using the following widgets from the widget library on the left:
Repeat the same steps for the memory and disk statistics sections. The disk statistics section doesn't require a chart, but if you can find a use for it, use it.
Your final widget layout should look something like the following:
Property Settings in Appsmith
The last step is to add the data to the API Bind to your widget.
Return to the canvas and find your widget in the three categories section. Start by setting up the CPU statistics.
To bind data to the "Progress Bar" widget:
{{PiData.data.cpu_percent ?? 0}}
in the "Progress" field. This code references your API's data stream, named PiData
. Appsmith caches response data in the .data
operator of PiData
. The key cpu_percent
contains the data used by Appsmith to display CPU utilization percentage. Bind data in configuration screen
在 CPU 部分有三个 “统计框Stat Box” 小部件。将数据绑定到每个小部件的步骤与绑定 “进度条Progress Bar” 小部件的步骤完全相同,只是你需要从 .data
运算符中绑定不同的数据属性。按照相同的步骤进行操作,但有以下例外:
{{${PiData.data.cpu_freq[0]} ?? 0 }}
来显示时钟速度。{{${PiData.data.cpu_count} ?? 0 }}
来显示 CPU 计数。{{${(PiData.data.sensor_temperatures).toPrecision(3)} ?? 0 }}
来显示 CPU 温度数据。如果一切顺利,你将得到一个漂亮的仪表盘,如下所示:
树莓派的仪表盘
你可以使用 “图表Chart” 小部件将 CPU 利用率显示为趋势线,并使其随时间自动更新。
首先,单击小部件,在右侧找到 “图表类型Chart Type” 属性,并将其更改为 “折线图LINE CHART”。为了显示趋势线,需要将 cpu_percent
存储在数据点数组中。你的 API 目前将其作为单个时间数据点返回,因此可以使用 Appsmith 的 storeValue
函数(Appsmith 内置的 setItem
方法的一个原生实现)来获取一个数组。
在 “查询或 JSQUERIES/JS” 旁边单击 “+” 按钮,并将其命名为 “utils”。
将以下 JavaScript 代码粘贴到 “代码Code” 字段中:
export default {getLiveData: () => {//When switch is on:if (Switch1.isSwitchedOn) {setInterval(() => {let utilData = appsmith.store.cpu_util_data;PiData.run()storeValue("cpu_util_data", [...utilData, {x: PiData.data.cpu_percent,y: PiData.data.cpu_percent}]); }, 1500, 'timerId')} else {clearInterval('timerId');}},initialOnPageLoad: () => {storeValue("cpu_util_data", []);}}
为了初始化 Store
,你在 initialOnPageLoad
对象中创建了一个 JavaScript 函数,并将 storeValue
函数放在其中。
你使用 storeValue("cpu_util_data", []);
将 cpu_util_data
中的值存储到 storeValue
函数中。此函数在页面加载时运行。
So far, the code will store a data point from cpu_util_data
into Store
every time the page is refreshed. To store an array, you use the x
and y
subscript variables, both of which store values from the cpu_percent
data attribute.
You also want to automatically store this data by setting a fixed time interval between storing values. When executing the setInterval function:
cpu_util_data
. PiData
. cpu_util_data
to the x
and y
variables using the latest cpu_percent
data returned. cpu_util_data
in the key utilData
. getLiveData
parent function. In the "Settings" tab, find all parent functions in the object and set initialOnPageLoad
to "RUN ON PAGE LOAD when the page loads" option. "Yes".
Set the function to be executed when the page loads
Now refresh the page to confirm.
Return to canvas. Click the Chart widget and find the Chart Data property. Paste the binding {{ appsmith.store.disk_util_data }}
into it. This way, if you run the object utils
yourself multiple times, you can get the chart data. To run this automatically:
onChange
event. {{ utils.getLiveData() }}
. The JavaScript object is utils
and getLiveData
is a function that is activated when you toggle the switch and gets live data from your Raspberry Pi. But there are other real-time data, so the same switch works for them too. Read on to learn more. Bind data to the widgets in the Memory and Disk sections in a similar way to what you did in the CPU Statistics section.
For the memory part, the binding is as follows:
{{( PiData.data.cpu_mem_avail/1000000000).toPrecision( 2) \* 100 ?? 0 }}
. {{ \${(PiData.data.cpu_mem_used/1000000000).toPrecision(2)} ?? 0 }} GB
, {{ \${(PiData.data.cpu_mem_free/1000000000).toPrecision(2)} ?? 0}} GB
and {{ \${(PiData.data.cpu_mem_total/1000000000 ).toPrecision(2)} ?? 0 }} GB
. For the disk part, the binding of the progress bar and statistics box widgets respectively becomes:
{{ PiData. data.disk_usage_percent ?? 0 }}
. {{ \${(PiData.data.disk_usage_used/1000000000).toPrecision(2)} ?? 0 }} GB
, {{ \${(PiData.data.disk_usage_free/1000000000).toPrecision(2)} ?? 0 }} GB
and {{ \${(PiData.data.disk_usage_total/1000000000 ).toPrecision(2)} ?? 0 }} GB
. The chart here needs to update the utils
object you created for CPU statistics, using the storeValue
key name disk_util_data
, embedded Set below getLiveData
, its logic is similar to cpu_util_data
. For the disk utilization chart, the logic of the disk_util_data
we store is the same as that of the CPU utilization trend chart.
export default {getLiveData: () => {//When switch is on:if (Switch1.isSwitchedOn) {setInterval(() => { const cpuUtilData = appsmith.store.cpu_util_data; const diskUtilData = appsmith.store.disk_util_data; PiData.run(); storeValue("cpu_util_data", [...cpuUtilData, { x: PiData.data.cpu_percent,y: PiData.data.cpu_percent }]); storeValue("disk_util_data", [...diskUtilData, { x: PiData.data.disk_usage_percent,y: PiData.data.disk_usage_percent }]);}, 1500, 'timerId')} else {clearInterval('timerId');}},initialOnPageLoad: () => {storeValue("cpu_util_data", []);storeValue("disk_util_data", []);}}
通过使用 utils
JavaScript 对象在打开和关闭真实数据开关时触发的数据流可视化如下所示:
切换
在打开实时数据开关时,图表会变成这样:
显示实时数据
整体上,它既漂亮,又简约,而且非常有用。
当你对 psutils
、JavaScript 和 Appsmith 更加熟悉时,我相信你会发现可以轻松无限地调整你的仪表板,实现非常酷的功能,例如:
psutils
扩展到另一台安装有 Python 的计算机上在下一个令人兴奋的项目中,祝你玩得愉快!
The above is the detailed content of Build a Raspberry Pi monitoring dashboard in less than 30 minutes. For more information, please follow other related articles on the PHP Chinese website!