Home >Backend Development >PHP Tutorial >Discussion on fault tolerance and false alarm rate optimization techniques based on PHP Bloom filter
Discussion on fault tolerance and false alarm rate optimization techniques based on PHP Bloom filter
Abstract: Bloom filter is a fast and efficient data structure used to determine whether an element exists in in collection. However, its error tolerance and false alarm rate are limited due to its specific design. This article will discuss how to implement Bloom filter fault tolerance and optimize the false alarm rate based on PHP, and give relevant code examples.
$key = 'example_key'; $hash1 = crc32($key) % $bitArraySize; $hash2 = fnv1a32($key) % $bitArraySize; $hash3 = murmurhash3($key) % $bitArraySize;
2.2 Dynamic expansion
The default size of the bit array of the Bloom filter is fixed. When the number of elements exceeds the capacity of the bit array , may lead to more hash collisions, thereby reducing fault tolerance. In order to solve this problem, a dynamic expansion mechanism can be implemented so that the bit array can automatically adjust its size according to the number of elements. The following is an example of dynamic expansion based on PHP:
class BloomFilter { private $bitArray; private $bitArraySize; private $elementCount; private $expectedFalsePositiveRate; public function __construct($expectedElements, $errorRate) { $this->expectedFalsePositiveRate = $errorRate; $this->bitArraySize = $this->calculateBitArraySize($expectedElements, $errorRate); $this->bitArray = array_fill(0, $this->bitArraySize, 0); $this->elementCount = 0; } public function add($key) { // 添加元素逻辑 // ... $this->elementCount++; if ($this->elementCount / $this->bitArraySize > $this->expectedFalsePositiveRate) { $this->resizeBitArray(); } } private function resizeBitArray() { // 动态扩容逻辑 // ... } // 其他方法省略 }
3.2 Set the hash function appropriately
The choice of hash function will also affect the false positive rate of the Bloom filter. Some commonly used hash functions, such as crc32, fnv1a32, and murmurhash3, have low collision rates. By choosing an appropriate hash function, the false positive rate can be further reduced.
function fnv1a32($key) { $fnv_prime = 16777619; $fnv_offset_basis = 2166136261; $hash = $fnv_offset_basis; $keyLength = strlen($key); for ($i = 0; $i < $keyLength; $i++) { $hash ^= ord($key[$i]); $hash *= $fnv_prime; } return $hash; }
Reference:
[1] Bloom filter. (2021, July 17). In Wikipedia, The Free Encyclopedia. Retrieved 09:01, August 3, 2021, from https:// en.wikipedia.org/w/index.php?title=Bloom_filter&oldid=1033783291.
The above is the detailed content of Discussion on fault tolerance and false alarm rate optimization techniques based on PHP Bloom filter. For more information, please follow other related articles on the PHP Chinese website!