


Configuration tips for building Linux smart logistics applications using CMake
Configuration tips for building Linux smart logistics applications using CMake
Abstract:
CMake is a cross-platform build tool that can be used to automate building and managing projects. In this article, we will introduce how to configure and build a Linux smart logistics application using CMake. We will focus on the basic configuration and common functions of CMake, and how to demonstrate its usage through sample code.
- Introduction to CMake
CMake is an open source cross-platform build tool that can be used to automatically generate project build files. It supports different build systems such as GNU Make, Ninja, Visual Studio, etc. CMake uses the CMakeLists.txt file to describe the project's build process and dependencies, and generates corresponding build files based on the file. -
Installing CMake
Installing CMake in a Linux system is very simple. You can use the following command to install:sudo apt-get install cmake
-
Create a CMakeLists.txt file
Create a CMakeLists.txt file in the root directory of the project. This file will be used to describe the configuration and build process of the project. The following is a simple CMakeLists.txt file example:cmake_minimum_required(VERSION 3.10) project(SmartLogisticsApp) # 添加可执行文件 add_executable(smart_logistics_app main.cpp) # 添加库文件 target_link_libraries(smart_logistics_app lib1 lib2) # 添加头文件 target_include_directories(smart_logistics_app PUBLIC include)
- Add source files and library files
In the CMakeLists.txt file, use the add_executable command to add source files and the target_link_libraries command to add library files. In the example, we add the main.cpp file as a source file and link the lib1 and lib2 library files. - Add the header file directory
Use the target_include_directories command to add the header file directory. In the example, we add the include directory as a header file directory. -
Build the project
Build the project using the following command:mkdir build cd build cmake .. make
-
Sample code description
The following is the sample code about the Linux smart logistics application :// main.cpp #include <iostream> #include "vehicle.h" int main() { Vehicle vehicle("ABC123", "Truck"); std::cout << "Vehicle Type: " << vehicle.getType() << std::endl; std::cout << "License Plate: " << vehicle.getLicensePlate() << std::endl; return 0; } // vehicle.h #ifndef VEHICLE_H #define VEHICLE_H #include <string> class Vehicle { public: Vehicle(const std::string& licensePlate, const std::string& type); std::string getType() const; std::string getLicensePlate() const; private: std::string m_licensePlate; std::string m_type; }; #endif // vehicle.cpp #include "vehicle.h" Vehicle::Vehicle(const std::string& licensePlate, const std::string& type) : m_licensePlate(licensePlate), m_type(type) {} std::string Vehicle::getType() const { return m_type; } std::string Vehicle::getLicensePlate() const { return m_licensePlate; }
The above sample code shows a smart logistics application, which contains a vehicle class Vehicle. A Vehicle object is created in the main.cpp file and relevant information is printed.
Conclusion:
This article introduces the basic techniques on how to use CMake to configure and build a Linux smart logistics application. We discussed the CMake installation process and provided an example of a CMakeLists.txt file. Additionally, we provide code for a sample application written in C. Through this article, readers can better understand the usage of CMake and its application in smart logistics applications.
The above is the detailed content of Configuration tips for building Linux smart logistics applications using CMake. For more information, please follow other related articles on the PHP Chinese website!

The five core components of the Linux operating system are: 1. Kernel, 2. System libraries, 3. System tools, 4. System services, 5. File system. These components work together to ensure the stable and efficient operation of the system, and together form a powerful and flexible operating system.

The five core elements of Linux are: 1. Kernel, 2. Command line interface, 3. File system, 4. Package management, 5. Community and open source. Together, these elements define the nature and functionality of Linux.

Linux user management and security can be achieved through the following steps: 1. Create users and groups, using commands such as sudouseradd-m-gdevelopers-s/bin/bashjohn. 2. Bulkly create users and set password policies, using the for loop and chpasswd commands. 3. Check and fix common errors, home directory and shell settings. 4. Implement best practices such as strong cryptographic policies, regular audits and the principle of minimum authority. 5. Optimize performance, use sudo and adjust PAM module configuration. Through these methods, users can be effectively managed and system security can be improved.

The core operations of Linux file system and process management include file system management and process control. 1) File system operations include creating, deleting, copying and moving files or directories, using commands such as mkdir, rmdir, cp and mv. 2) Process management involves starting, monitoring and killing processes, using commands such as ./my_script.sh&, top and kill.

Shell scripts are powerful tools for automated execution of commands in Linux systems. 1) The shell script executes commands line by line through the interpreter to process variable substitution and conditional judgment. 2) The basic usage includes backup operations, such as using the tar command to back up the directory. 3) Advanced usage involves the use of functions and case statements to manage services. 4) Debugging skills include using set-x to enable debugging mode and set-e to exit when the command fails. 5) Performance optimization is recommended to avoid subshells, use arrays and optimization loops.

Linux is a Unix-based multi-user, multi-tasking operating system that emphasizes simplicity, modularity and openness. Its core functions include: file system: organized in a tree structure, supports multiple file systems such as ext4, XFS, Btrfs, and use df-T to view file system types. Process management: View the process through the ps command, manage the process using PID, involving priority settings and signal processing. Network configuration: Flexible setting of IP addresses and managing network services, and use sudoipaddradd to configure IP. These features are applied in real-life operations through basic commands and advanced script automation, improving efficiency and reducing errors.

The methods to enter Linux maintenance mode include: 1. Edit the GRUB configuration file, add "single" or "1" parameters and update the GRUB configuration; 2. Edit the startup parameters in the GRUB menu, add "single" or "1". Exit maintenance mode only requires restarting the system. With these steps, you can quickly enter maintenance mode when needed and exit safely, ensuring system stability and security.

The core components of Linux include kernel, shell, file system, process management and memory management. 1) Kernel management system resources, 2) shell provides user interaction interface, 3) file system supports multiple formats, 4) Process management is implemented through system calls such as fork, and 5) memory management uses virtual memory technology.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Atom editor mac version download
The most popular open source editor

SublimeText3 Mac version
God-level code editing software (SublimeText3)

SublimeText3 Chinese version
Chinese version, very easy to use
