


Based on information theory calibration technology, CML makes multi-modal machine learning more reliable
Multimodal machine learning has made impressive progress in various scenarios. However, the reliability of multimodal learning models lacks in-depth research. "Information is the elimination of uncertainty." The original intention of multi-modal machine learning is consistent with this - added modalities can make predictions more accurate and reliable. However, the paper "Calibrating Multimodal Learning" recently published in ICML2023 found that current multimodal learning methods violate this reliability assumption, and made detailed analysis and corrections.
Picture
- ##Paper Arxiv: https:// arxiv.org/abs/2306.01265
- Code GitHub: https://github.com/QingyangZhang/CML
The current multi-modal classification method has unreliable confidence, that is, when some modes are removed, the model may produce higher confidence, which violates the information theory "Information is the elimination of uncertainty" is the basic principle. To address this problem, this article proposes the Calibrating Multimodal Learning method. This method can be deployed in different multi-modal learning paradigms to improve the rationality and credibility of multi-modal learning models.
Picture
This work points out that current multi-modal learning methods have unreliable prediction confidence problems. Modal machine learning models tend to rely on partial modalities to estimate confidence. In particular, the study found that the confidence of current model estimates increases when certain modes are damaged. To solve this unreasonable problem, the authors propose an intuitive multi-modal learning principle: when the modality is removed, the model prediction confidence should not increase. However, current models tend to believe and be influenced by a subset of modalities, rather than considering all modalities fairly. This further affects the robustness of the model, i.e. the model is easily affected when certain modes are damaged.
To solve the above problems, some current methods adopt existing uncertainty calibration methods, such as Temperature Scaling or Bayesian learning methods. These methods can construct more accurate confidence estimates than traditional training/inference methods. However, these methods only match the confidence estimate of the final fusion result with the accuracy, and do not explicitly consider the relationship between the modal information amount and confidence. Therefore, they cannot essentially improve the credibility of the multi-modal learning model.
The author proposes a new regularization technique called "Calibrating Multimodal Learning (CML)". This technique enforces the matching relationship between model prediction confidence and information content by adding a penalty term to achieve consistency between prediction confidence and information content. This technique is based on the natural intuition that when a modality is removed, prediction confidence should decrease (at least it should not increase), which can inherently improve confidence calibration. Specifically, a simple regularization term is proposed to force the model to learn intuitive ordering relationships by adding a penalty to those samples whose prediction confidence increases when a modality is removed:
The above constraints are regular losses, which appear as penalties when modal information is removed and confidence increases.
Experimental results show that CML regularization can significantly improve the reliability of prediction confidence of existing multi-modal learning methods. Additionally, CML can improve classification accuracy and improve model robustness.
Multimodal machine learning has made significant progress in various scenarios, but the reliability of multimodal machine learning models is still a problem that needs to be solved. Through extensive empirical research, this paper finds that current multimodal classification methods have the problem of unreliable prediction confidence and violate the principles of information theory. To address this issue, researchers proposed the CML regularization technique, which can be flexibly deployed to existing models and improve performance in terms of confidence calibration, classification accuracy, and model robustness. It is believed that this new technology will play an important role in future multi-modal learning and improve the reliability and practicality of machine learning.
The above is the detailed content of Based on information theory calibration technology, CML makes multi-modal machine learning more reliable. For more information, please follow other related articles on the PHP Chinese website!

The legal tech revolution is gaining momentum, pushing legal professionals to actively embrace AI solutions. Passive resistance is no longer a viable option for those aiming to stay competitive. Why is Technology Adoption Crucial? Legal professional

Many assume interactions with AI are anonymous, a stark contrast to human communication. However, AI actively profiles users during every chat. Every prompt, every word, is analyzed and categorized. Let's explore this critical aspect of the AI revo

A successful artificial intelligence strategy cannot be separated from strong corporate culture support. As Peter Drucker said, business operations depend on people, and so does the success of artificial intelligence. For organizations that actively embrace artificial intelligence, building a corporate culture that adapts to AI is crucial, and it even determines the success or failure of AI strategies. West Monroe recently released a practical guide to building a thriving AI-friendly corporate culture, and here are some key points: 1. Clarify the success model of AI: First of all, we must have a clear vision of how AI can empower business. An ideal AI operation culture can achieve a natural integration of work processes between humans and AI systems. AI is good at certain tasks, while humans are good at creativity and judgment

Meta upgrades AI assistant application, and the era of wearable AI is coming! The app, designed to compete with ChatGPT, offers standard AI features such as text, voice interaction, image generation and web search, but has now added geolocation capabilities for the first time. This means that Meta AI knows where you are and what you are viewing when answering your question. It uses your interests, location, profile and activity information to provide the latest situational information that was not possible before. The app also supports real-time translation, which completely changed the AI experience on Ray-Ban glasses and greatly improved its usefulness. The imposition of tariffs on foreign films is a naked exercise of power over the media and culture. If implemented, this will accelerate toward AI and virtual production

Artificial intelligence is revolutionizing the field of cybercrime, which forces us to learn new defensive skills. Cyber criminals are increasingly using powerful artificial intelligence technologies such as deep forgery and intelligent cyberattacks to fraud and destruction at an unprecedented scale. It is reported that 87% of global businesses have been targeted for AI cybercrime over the past year. So, how can we avoid becoming victims of this wave of smart crimes? Let’s explore how to identify risks and take protective measures at the individual and organizational level. How cybercriminals use artificial intelligence As technology advances, criminals are constantly looking for new ways to attack individuals, businesses and governments. The widespread use of artificial intelligence may be the latest aspect, but its potential harm is unprecedented. In particular, artificial intelligence

The intricate relationship between artificial intelligence (AI) and human intelligence (NI) is best understood as a feedback loop. Humans create AI, training it on data generated by human activity to enhance or replicate human capabilities. This AI

Anthropic's recent statement, highlighting the lack of understanding surrounding cutting-edge AI models, has sparked a heated debate among experts. Is this opacity a genuine technological crisis, or simply a temporary hurdle on the path to more soph

India is a diverse country with a rich tapestry of languages, making seamless communication across regions a persistent challenge. However, Sarvam’s Bulbul-V2 is helping to bridge this gap with its advanced text-to-speech (TTS) t


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Zend Studio 13.0.1
Powerful PHP integrated development environment

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool
