search
HomeTechnology peripheralsAIGoogle's DeepMind has developed the RoboCat AI model, which can control a variety of robots to perform a series of tasks

谷歌旗下 DeepMind 开发出 RoboCat AI 模型,能控制多种机器人执行一系列任务

On June 26, Google’s DeepMind said that the company has developed an artificial intelligence model called RoboCat that can control different robot arms to perform a series of tasks. This alone isn't particularly novel, but DeepMind claims that the model is the first to be able to solve and adapt to a variety of tasks, and to do so using different, real-world robots.

谷歌旗下 DeepMind 开发出 RoboCat AI 模型,能控制多种机器人执行一系列任务

RoboCat was inspired by another DeepMind AI model, Gato, which can analyze and process text, images and events. RoboCat's training data includes images and motion data of simulated and real robots, derived from other robot control models in virtual environments, human-controlled robots, and previous versions of RoboCat itself.

Alex Lee, a research scientist at DeepMind and one of the collaborators on the RoboCat team, said in an email interview with TechCrunch: "We showed that a single large model can be used on multiple real-world models. The robot physically solves diverse tasks and can quickly adapt to new tasks and entities."

IT House noted that in order to train RoboCat, DeepMind researchers first used human-controlled robotic arms, Between 100 and 1000 demonstrations of each task or robot were collected in simulated or real environments. For example, let a robotic arm pick up gears or stack building blocks. They then fine-tuned RoboCat, creating a specialized "derived" model on each task and letting it practice an average of 10,000 times. By leveraging data generated by derived models and demonstration data, researchers continue to expand RoboCat's training data set and train new versions of RoboCat.

The final version of RoboCat was trained on a total of 253 tasks and tested on 141 variations of these tasks, both in simulation and in the real world. DeepMind claims that RoboCat learned to operate different types of robotic arms after observing 1,000 human-controlled demonstrations collected over several hours. While RoboCat has been trained on four robots with two-finger arms, the model was able to adapt to a more complex arm with a three-finger gripper and twice as many controllable inputs.

Despite this, RoboCat's success rates on different tasks varied greatly in DeepMind's tests, ranging from a low of 13% to a high of 99%. This is with 1000 demonstrations in the training data; if the number of demonstrations is halved, the success rate will decrease accordingly. In some cases, though, DeepMind claims RoboCat can learn new tasks by observing just 100 demonstrations.

Alex Lee believes RoboCat might make it easier to solve new tasks. “Given a certain number of demonstrations of a new task, RoboCat can fine-tune to new tasks and self-generate more data to improve further,” he added.

Going forward, the research team aims to reduce the number of demonstrations needed to teach RoboCat to complete new tasks to less than 10.

The above is the detailed content of Google's DeepMind has developed the RoboCat AI model, which can control a variety of robots to perform a series of tasks. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:51CTO.COM. If there is any infringement, please contact admin@php.cn delete
Flash Attention稳定吗?Meta、哈佛发现其模型权重偏差呈现数量级波动Flash Attention稳定吗?Meta、哈佛发现其模型权重偏差呈现数量级波动May 30, 2024 pm 01:24 PM

MetaFAIR联合哈佛优化大规模机器学习时产生的数据偏差,提供了新的研究框架。据所周知,大语言模型的训练常常需要数月的时间,使用数百乃至上千个GPU。以LLaMA270B模型为例,其训练总共需要1,720,320个GPU小时。由于这些工作负载的规模和复杂性,导致训练大模型存在着独特的系统性挑战。最近,许多机构在训练SOTA生成式AI模型时报告了训练过程中的不稳定情况,它们通常以损失尖峰的形式出现,比如谷歌的PaLM模型训练过程中出现了多达20次的损失尖峰。数值偏差是造成这种训练不准确性的根因,

TPC 联盟成立:目标万亿以上参数 AI 模型,推进科学发现TPC 联盟成立:目标万亿以上参数 AI 模型,推进科学发现Nov 18, 2023 pm 07:29 PM

11月16日消息,业内领先的科研机构、美国国家超级计算中心和诸多AI领域龙头公司,近日联合组建了万亿参数联盟(TrillionParameterConsortium,简称TPC)。由DALL-E3生成根据报道,本站获悉,TPC联盟由全球各实验室、科研机构、学术界和工业界的科学家组成,旨在共同推进用于科学发现的人工智能模型,并特别关注拥有一万亿或更多参数的巨型模型TPC联盟目前正致力于开发可扩展的模型架构和训练策略,同时组织和整理用于模型训练的科学数据,以优化AI库在当前和未来的百万兆次级计算平台

微软推出 XOT 技术,加强语言模型的推理能力微软推出 XOT 技术,加强语言模型的推理能力Nov 17, 2023 pm 05:45 PM

11月15日消息,微软近日推出了名为“EverythingofThought”(XOT)的方法,灵感来自谷歌DeepMind的AlphaZero,利用紧凑的神经网络,来增强AI模型推理能力。微软和佐治亚理工学院、华东师范大学合作开发了该算法,整合了强化学习(reinforcementlearning)和蒙特卡洛树搜索(MCTS)能力,在复杂决策环境中,进一步提高解决问题的有效性。本站注意:微软研究团队表示,XOT方法可以使语言模型在不熟悉的问题上得到扩展,在Gameof24、8-Puzzle和P

谷歌旗下 DeepMind 开发出 RoboCat AI 模型,能控制多种机器人执行一系列任务谷歌旗下 DeepMind 开发出 RoboCat AI 模型,能控制多种机器人执行一系列任务Jun 26, 2023 pm 04:07 PM

6月26日消息,谷歌旗下DeepMind表示,该公司已经开发出一种名为RoboCat的人工智能模型,可以控制不同的机器人手臂执行一系列任务。仅仅这一点并不特别新颖,但DeepMind声称,该模型是第一个能够解决和适应多种任务的模型,并且使用不同的、真实世界的机器人来完成。RoboCat的灵感来自于DeepMind的另一个AI模型Gato,后者可以分析和处理文本、图像和事件。RoboCat的训练数据包括模拟和真实机器人的图像和动作数据,这些数据来自于虚拟环境中的其他机器人控制模型、人类控制的机器人

Databricks 发布大数据分析平台 Spark 用 AI 模型 SDK:一键生成 SQL 及 FySpark 语言图表代码Databricks 发布大数据分析平台 Spark 用 AI 模型 SDK:一键生成 SQL 及 FySpark 语言图表代码Jul 17, 2023 pm 05:53 PM

7月10日消息,Databricks日前发布大数据分析平台Spark所用的AI模型SDK,开发者写代码时,可用英文下指令,编译器就会将英文指令转换为PySpark或SQL语言代码,以提升开发者效率。▲图源Databricks网站据悉,Spark是一款开源大数据分析工具,每年超过10亿次下载、在全球208个国家和地区使用。▲图源Databricks网站Databricks表示,微软的AI代码助手GitHubCopilot固然强大,但使用门槛也相当高,Databricks的SDK相对更具普适性,更易

微软发布最新 AI 服务条款:禁止反向工程等活动微软发布最新 AI 服务条款:禁止反向工程等活动Aug 16, 2023 pm 05:53 PM

微软于8月16日公布了其AI服务条款,并宣布该条款将于9月30日生效。这次更新的主要内容是针对生成式AI,特别是与相关用户的使用以及负责任的开发实践相关的内容微软强调官方不会保留用户与必应聊天的对话记录,也不会将这些聊天数据用于训练BingEnterpriseChat的AI模型这五个关键政策要点覆盖了多个领域,包括禁止用户试图对AI模型进行逆向工程以防止揭示底层组件;除非明确允许,否则禁止通过Web抓取等方式提取数据;一项重要条款限制用户使用AI数据来创建或增强其他AI服务以下是微软新增的条款内

谷歌 DeepMind 公布的“FunSearch”训练法:让 AI 模型能够解决复杂离散数学问题谷歌 DeepMind 公布的“FunSearch”训练法:让 AI 模型能够解决复杂离散数学问题Dec 17, 2023 pm 08:15 PM

12月15日消息,谷歌DeepMind日前公布了一种名为“FunSearch”的模型训练法,号称能够计算包含“上限级问题”、“装箱问题”在内的一系列“涉及数学、计算机科学领域的复杂问题”。需要进行改写的内容是:▲图源:谷歌DeepMind(以下简称DeepMind)据悉,FunSearch模型训练法主要为AI模型引入了一个“评估器(Evaluator)”系统,AI模型输出一系列“创意解题方法”,“评估器”则负责评判模型输出的解题办法,反复迭代后,就能训练出数学能力更强的AI模型。谷歌的DeepM

微软推出 LLaVA-Med AI 模型,可对医学病理案例进行分析微软推出 LLaVA-Med AI 模型,可对医学病理案例进行分析Jun 15, 2023 pm 03:06 PM

6月14日消息,日前微软研究人员展示了LLaVA-Med模型,该模型主要用于生物医学方面的研究,可根据CT、X光图片等推测出患者的病理状况。据悉,微软研究人员与一批医院合作,获得了使用生物医学图像文本对应大型数据集来训练多模态AI模型。该数据集包括胸部X光、MRI、组织学、病理学和CT图像等,覆盖范围相对全面。▲图源微软微软使用GPT-4,基于VisionTransformer和Vicuna语言模型,在八个英伟达A100GPU上对LLaVA-Med进行训练,其中包含“每个图像的所有预分析信息”,

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

Hot Tools

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

DVWA

DVWA

Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools

Atom editor mac version download

Atom editor mac version download

The most popular open source editor

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.