


Python is a very commonly used programming language, often used for tasks such as data processing and analysis. In Python, regular expressions are a very important tool that can be used to extract required information from text. Because Python's regular expressions are very powerful, if you don't pay attention to performance optimization when using them, it will cause problems such as slow program running and long time consumption. This article will introduce how to use Python regular expressions for performance optimization to improve the efficiency of regular expression processing.
- Use native strings
Strings in Python can be represented by single quotes or double quotes, but if there are special symbols in the string, they need to be escaped. This results in slow regular expression processing. In order to solve this problem, you can use raw string notation, that is, add "r" in front of the string, so that special symbols do not need to be escaped.
For example:
text = r"hello,world "
- Be careful when using "."
The "." in regular expressions is usually used to match any character. However, if you directly use "." to match, it will have a great impact on performance. This is because "." will match any character except newlines, and if there are many newlines in the text, the matching speed will slow down.
To avoid this problem, we can use non-greedy mode to match any character that is not a newline character. The non-greedy mode method is to add "?" after ".", so that only the first newline character is matched, and not all the way to the end of the file.
For example:
text = "hello world" # 匹配出hello re.findall(r".*?", text)
- Avoid using capture groups
In regular expressions, brackets "()" are used to group, but if you use capture Capturing group, that is, writing an expression within parentheses, can be used in subsequent matching. However, capturing groups can cause performance degradation because information about the expression within the parentheses needs to be recorded during matching.
In order to avoid this problem, you can use a non-capturing group, that is, add "?:" before the brackets, so that it will not affect performance.
For example:
text = "hello,world" # 使用捕获组 re.findall(r"(hello)", text) # 使用非捕获组 re.findall(r"(?:hello)", text)
- Use precompilation
When you need to use the same regular expression multiple times, precompilation can greatly improve the regular expression s efficiency. Precompilation can parse the syntax of a regular expression once and use it until the program exits, thus avoiding the performance loss of parsing each time.
For example:
pattern = re.compile(r"hello") text = "hello,world" # 预编译 pattern.findall(text)
- Avoid using greedy mode
Greedy mode (greedy mode) refers to matching as many characters as possible. If greedy mode is used in regular expressions, the matching range will be too large, thus affecting performance. This problem can be avoided by using non-greedy mode.
For example:
text = "<html>hello,world</html>" # 使用贪婪模式 re.findall(r"<.*>", text) # 使用非贪婪模式 re.findall(r"<.*?>", text)
Summary: The above are the performance optimization methods of Python regular expressions, including using native strings, avoiding the use of ".", avoiding the use of capturing groups, using precompilation and avoiding Use greedy mode etc. If the above methods can be used correctly, the efficiency of regular expression processing can be greatly improved, making data processing and analysis in Python more efficient.
The above is the detailed content of How to use Python regular expressions for performance optimization. For more information, please follow other related articles on the PHP Chinese website!

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于Seaborn的相关问题,包括了数据可视化处理的散点图、折线图、条形图等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于进程池与进程锁的相关问题,包括进程池的创建模块,进程池函数等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于简历筛选的相关问题,包括了定义 ReadDoc 类用以读取 word 文件以及定义 search_word 函数用以筛选的相关内容,下面一起来看一下,希望对大家有帮助。

VS Code的确是一款非常热门、有强大用户基础的一款开发工具。本文给大家介绍一下10款高效、好用的插件,能够让原本单薄的VS Code如虎添翼,开发效率顿时提升到一个新的阶段。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于数据类型之字符串、数字的相关问题,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于numpy模块的相关问题,Numpy是Numerical Python extensions的缩写,字面意思是Python数值计算扩展,下面一起来看一下,希望对大家有帮助。

pythn的中文意思是巨蟒、蟒蛇。1989年圣诞节期间,Guido van Rossum在家闲的没事干,为了跟朋友庆祝圣诞节,决定发明一种全新的脚本语言。他很喜欢一个肥皂剧叫Monty Python,所以便把这门语言叫做python。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Linux new version
SublimeText3 Linux latest version
