search
HomeBackend DevelopmentPython TutorialHow to use Python regular expressions for JSON processing
How to use Python regular expressions for JSON processingJun 23, 2023 am 10:06 AM
pythonregular expressionjson processing

In daily programming work, sometimes we need to process JSON data and extract information, and the powerful functions of regular expressions can help us complete this work quickly and efficiently. In this article, we will introduce how to use Python regular expressions for JSON processing.

JSON is a lightweight data exchange format commonly used for network transmission and data storage. In Python, we can use the json library to parse JSON data, but in some cases, we need to perform certain processing and extraction of JSON data. At this time, regular expressions will play its role.

First, let’s take a look at the basic structure of JSON data. JSON data usually consists of key-value pairs. Keys and values ​​are separated by colons ":", each key-value pair is separated by commas ",", and the outermost layer is usually wrapped by curly brackets "{}". For example:

{
   "name": "John",
   "age": 30,
   "city": "New York"
}

Now let's take a look at how to use Python regular expressions to extract this JSON data. Suppose we need to extract the "name" and "age" fields, we can use the following regular expressions :

"name":s*"([^"]+)",s*"age":s*(d+)

Analyze this regular expression:

  • ": Match " character
  • s*: Match any number of space characters
  • ( group): captures the matched content. group can be any character or regular expression
  • 1, matching any character except "

Through the above regular expression, we can extract the value corresponding to the "name" field and the value corresponding to the "age" field. Implemented using Python code:

import re

s = '{"name": "John", "age": 30, "city": "New York"}'

pattern = re.compile(r'"name":s*"([^"]+)",s*"age":s*(d+)')

match = pattern.search(s)

if match:
    name = match.group(1)
    age = match.group(2)
    print(name, age)

Output:

John 30

Next, let’s take a look at more application scenarios of how to use Python regular expressions to extract JSON data.

  1. Extracting the value of a specified field

Sometimes we only need to extract the value of a certain field, and we can use the following regular expression:

"field_name":s*"([^"]+)"

For example, if we need to extract the value corresponding to the "city" field in the JSON data above, we can use the following regular expression: :

"city":s*"([^"]+)"

Python code implementation:

import re

s = '{"name": "John", "age": 30, "city": "New York"}'

pattern = re.compile(r'"city":s*"([^"]+)",')

match = pattern.search(s)

if match:
    city = match.group(1)
    print(city)

Output:

New York
  1. Array type element extraction

In JSON data, there are When we need to extract the value of an array type element, we can use the following regular expression:

"array_field":s*[s*([sS]*?)s*]

For example, we need to extract all elements in the value corresponding to the "pets" field in the following JSON data:

{
   "name": "John",
   "age": 30,
   "pets": [
       {
           "name": "dog",
           "age": 3
       },
       {
           "name": "cat",
           "age": 2
       }
   ]
}

You can use regular expressions as follows:

"pets":s*[s*([sS]*?)s*]

Python code implementation:

import re

s = '{"name": "John", "age": 30, "pets": [{"name": "dog", "age": 3},{"name": "cat", "age": 2}]}'

pattern = re.compile(r'"pets":s*[s*([sS]*?)s*]')

match = pattern.search(s)

if match:
    pets = match.group(1)
    print(pets)

Output:

{"name": "dog", "age": 3},{"name": "cat", "age": 2}
  1. Multiple levels of nested element extraction

Sometimes we need to extract a certain value in a multi-layer nested element, you can use the following regular expression:

"object1":s*{s*[sS]*?"object2":s*{s*[sS]*?"field_name":s*"([^"]+)"

For example, we need to extract the "pets" field corresponding to the following JSON data The value corresponding to the "age" field of the second element in the value:

{
   "name": "John",
   "age": 30,
   "pets": [
       {
           "name": "dog",
           "age": 3
       },
       {
           "name": "cat",
           "age": 2
       }
   ]
}

You can use the regular expression as follows:

"pets":s*[s*[sS]*?"age":s*(d+)[sS]*?}

Python code implementation:

import re

s = '{"name": "John", "age": 30, "pets": [{"name": "dog", "age": 3},{"name": "cat", "age": 2}]}'

pattern = re.compile(r'"pets":s*[s*[sS]*?"age":s*(d+)[sS]*?}')

match = pattern.search(s)

if match:
    age = match.group(1)
    print(age)

Output :

2

Summary:
Using regular expressions for JSON processing allows us to extract and process JSON data more flexibly, which is useful for certain situations where JSON data needs to be filtered, filtered, converted, etc. It is of great significance in the application scenarios of the operation. However, it should be noted that when processing JSON data, regular expressions may not be suitable for more complex situations, and need to be selected flexibly according to the actual situation.


  1. "

The above is the detailed content of How to use Python regular expressions for JSON processing. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
详细讲解Python之Seaborn(数据可视化)详细讲解Python之Seaborn(数据可视化)Apr 21, 2022 pm 06:08 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于Seaborn的相关问题,包括了数据可视化处理的散点图、折线图、条形图等等内容,下面一起来看一下,希望对大家有帮助。

详细了解Python进程池与进程锁详细了解Python进程池与进程锁May 10, 2022 pm 06:11 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于进程池与进程锁的相关问题,包括进程池的创建模块,进程池函数等等内容,下面一起来看一下,希望对大家有帮助。

Python自动化实践之筛选简历Python自动化实践之筛选简历Jun 07, 2022 pm 06:59 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于简历筛选的相关问题,包括了定义 ReadDoc 类用以读取 word 文件以及定义 search_word 函数用以筛选的相关内容,下面一起来看一下,希望对大家有帮助。

归纳总结Python标准库归纳总结Python标准库May 03, 2022 am 09:00 AM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于标准库总结的相关问题,下面一起来看一下,希望对大家有帮助。

Python数据类型详解之字符串、数字Python数据类型详解之字符串、数字Apr 27, 2022 pm 07:27 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于数据类型之字符串、数字的相关问题,下面一起来看一下,希望对大家有帮助。

分享10款高效的VSCode插件,总有一款能够惊艳到你!!分享10款高效的VSCode插件,总有一款能够惊艳到你!!Mar 09, 2021 am 10:15 AM

VS Code的确是一款非常热门、有强大用户基础的一款开发工具。本文给大家介绍一下10款高效、好用的插件,能够让原本单薄的VS Code如虎添翼,开发效率顿时提升到一个新的阶段。

详细介绍python的numpy模块详细介绍python的numpy模块May 19, 2022 am 11:43 AM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于numpy模块的相关问题,Numpy是Numerical Python extensions的缩写,字面意思是Python数值计算扩展,下面一起来看一下,希望对大家有帮助。

python中文是什么意思python中文是什么意思Jun 24, 2019 pm 02:22 PM

pythn的中文意思是巨蟒、蟒蛇。1989年圣诞节期间,Guido van Rossum在家闲的没事干,为了跟朋友庆祝圣诞节,决定发明一种全新的脚本语言。他很喜欢一个肥皂剧叫Monty Python,所以便把这门语言叫做python。

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Tools

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.