Scrapy in action: Crawl Baidu news data
With the development of the Internet, the main way people obtain information has shifted from traditional media to the Internet, and people increasingly rely on the Internet to obtain news information. For researchers or analysts, a large amount of data is needed for analysis and research. Therefore, this article will introduce how to use Scrapy to crawl Baidu news data.
Scrapy is an open source Python crawler framework that can crawl website data quickly and efficiently. Scrapy provides powerful web page parsing and crawling functions, as well as good scalability and a high degree of customization.
Step 1: Install Scrapy
Before you start, you need to install Scrapy and some other libraries. The installation can be completed through the following command:
pip install scrapy pip install requests pip install bs4
Step 2: Create a Scrapy project
Create a Scrapy project through the following command:
scrapy startproject baiduNews
After the command is executed, A folder named baiduNews will be created in the current directory, which contains the initial structure of a Scrapy project.
Step 3: Write Spider
In Scrapy, Spider is a processor used to crawl web content. We need to write a Spider to obtain data from Baidu News website. First, we need to create a spiders folder in the project root directory and create a Python file in it to fit the spider template.
import scrapy class BaiduSpider(scrapy.Spider): name = "baidu" start_urls = [ "http://news.baidu.com/" ] def parse(self, response): pass
In the above code, we first imported the Scrapy library and created a class named BaiduSpider. In the class, we define a variable start_urls, which is a list containing Baidu News URLs. The parse method is the core function for performing data capture. Here, we just define an empty function. Now, we need to define a template to get the news data.
import scrapy from baiduNews.items import BaidunewsItem from bs4 import BeautifulSoup class BaiduSpider(scrapy.Spider): name = "baidu" start_urls = [ "http://news.baidu.com/" ] def parse(self, response): soup = BeautifulSoup(response.body, "html.parser") results = soup.find_all("div", class_="hdline_article_tit") for res in results: item = BaidunewsItem() item["title"] = res.a.string.strip() item["url"] = res.a.get("href").strip() item["source"] = "百度新闻" yield item
In the above code, we found all elements with class hdline_article_tit, which are the headlines of Baidu News. We then use BeautifulSoup to parse the page and create a BaidunewsItem class object in a loop. Finally, we return the data through the yield statement.
Step 4: Define Item
In Scrapy, Item is used to define the crawled data structure. We need to define an Item template in the items.py file in the project.
import scrapy class BaidunewsItem(scrapy.Item): title = scrapy.Field() url = scrapy.Field() source = scrapy.Field()
Step 5: Start Spider and output data
We only need to run the following command to start the Spider and output data:
scrapy crawl baidu -o baiduNews.csv
After the command is executed, it will Create a file named baiduNews.csv in the project root directory, containing all crawled news data.
Summary
With Scrapy, we can quickly and efficiently obtain Baidu news data and save it locally. Scrapy has good scalability and supports output in multiple data formats. This article only introduces a simple application scenario of Scrapy, but Scrapy still has many powerful functions waiting for us to explore.
The above is the detailed content of Scrapy in action: crawling Baidu news data. For more information, please follow other related articles on the PHP Chinese website!

Scrapy实现微信公众号文章爬取和分析微信是近年来备受欢迎的社交媒体应用,在其中运营的公众号也扮演着非常重要的角色。众所周知,微信公众号是一个信息和知识的海洋,因为其中每个公众号都可以发布文章、图文消息等信息。这些信息可以被广泛地应用在很多领域中,比如媒体报道、学术研究等。那么,本篇文章将介绍如何使用Scrapy框架来实现微信公众号文章的爬取和分析。Scr

Scrapy是一个开源的Python爬虫框架,它可以快速高效地从网站上获取数据。然而,很多网站采用了Ajax异步加载技术,使得Scrapy无法直接获取数据。本文将介绍基于Ajax异步加载的Scrapy实现方法。一、Ajax异步加载原理Ajax异步加载:在传统的页面加载方式中,浏览器发送请求到服务器后,必须等待服务器返回响应并将页面全部加载完毕才能进行下一步操

Scrapy是一个功能强大的Python爬虫框架,可以用于从互联网上获取大量的数据。但是,在进行Scrapy开发时,经常会遇到重复URL的爬取问题,这会浪费大量的时间和资源,影响效率。本文将介绍一些Scrapy优化技巧,以减少重复URL的爬取,提高Scrapy爬虫的效率。一、使用start_urls和allowed_domains属性在Scrapy爬虫中,可

Scrapy是一款强大的Python爬虫框架,可以帮助我们快速、灵活地获取互联网上的数据。在实际爬取过程中,我们会经常遇到HTML、XML、JSON等各种数据格式。在这篇文章中,我们将介绍如何使用Scrapy分别爬取这三种数据格式的方法。一、爬取HTML数据创建Scrapy项目首先,我们需要创建一个Scrapy项目。打开命令行,输入以下命令:scrapys

在Scrapy爬虫中使用Selenium和PhantomJSScrapy是Python下的一个优秀的网络爬虫框架,已经被广泛应用于各个领域中的数据采集和处理。在爬虫的实现中,有时候需要模拟浏览器操作去获取某些网站呈现的内容,这时候就需要用到Selenium和PhantomJS。Selenium是模拟人类对浏览器的操作,让我们可以自动化地进行Web应用程序测试

近年来,人们对社交网络分析的需求越来越高。而QQ空间又是中国最大的社交网络之一,其数据的爬取和分析对于社交网络研究来说尤为重要。本文将介绍如何使用Scrapy框架来爬取QQ空间数据,并进行社交网络分析。一、Scrapy介绍Scrapy是一个基于Python的开源Web爬取框架,它可以帮助我们快速高效地通过Spider机制采集网站数据,并对其进行处理和保存。S

Scrapy是一款Python编写的强大的网络爬虫框架,它可以帮助用户从互联网上快速、高效地抓取所需的信息。然而,在使用Scrapy进行爬取的过程中,往往会遇到一些问题,例如抓取失败、数据不完整或爬取速度慢等情况,这些问题都会影响到爬虫的效率和稳定性。因此,本文将探讨Scrapy如何提高爬取稳定性和抓取效率。设置请求头和User-Agent在进行网络爬取时,

随着互联网的发展,人们越来越依赖于网络来获取信息。而对于图书爱好者而言,豆瓣图书已经成为了一个不可或缺的平台。并且,豆瓣图书也提供了丰富的图书评分和评论,使读者能够更加全面地了解一本图书。但是,手动获取这些信息无异于大海捞针,这时候,我们可以借助Scrapy工具进行数据爬取。Scrapy是一个基于Python的开源网络爬虫框架,它可以帮助我们高效地


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SublimeText3 Linux new version
SublimeText3 Linux latest version

WebStorm Mac version
Useful JavaScript development tools

Dreamweaver CS6
Visual web development tools

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

SublimeText3 Chinese version
Chinese version, very easy to use
