


Scrapy crawler practice: crawling QQ space data for social network analysis
In recent years, people's demand for social network analysis has become higher and higher. QQ Zone is one of the largest social networks in China, and its data crawling and analysis are particularly important for social network research. This article will introduce how to use the Scrapy framework to crawl QQ Space data and conduct social network analysis.
1. Introduction to Scrapy
Scrapy is an open source web crawling framework based on Python. It can help us quickly and efficiently collect website data through the Spider mechanism, process and save it. The Scrapy framework consists of five core components: Engine, Scheduler, Downloader, Spider and Project Pipeline. Spider is the core component of crawler logic, which defines how to access the website. Extract data from web pages and how to store the extracted data.
2. Scrapy operation process
1. Create a Scrapy project
Use the command line to enter the directory where you want to create the project, and then enter the following command:
scrapy startproject qq_zone
This command will create a Scrapy project named "qq_zone".
2. Create Spider
In the Scrapy project, we need to create a Spider first. Create a folder named "spiders" in the directory of the project, and create a Python file named "qq_zone_spider.py" under the folder.
In qq_zone_spider.py, we need to first define the basic information of Spider, such as name, starting URL and allowed domain names. The code is as follows:
import scrapy class QQZoneSpider(scrapy.Spider): name = "qq_zone" start_urls = ['http://user.qzone.qq.com/xxxxxx'] allowed_domains = ['user.qzone.qq.com']
It should be noted that start_urls should be replaced with the URL of the QQ space main page to be crawled, and "xxxxxx" should be replaced with the numeric ID of the target QQ number.
Then, we need to define data extraction rules. Since QQ Space is a page rendered through Javascript, we need to use Selenium PhantomJS to obtain page data. The code is as follows:
from scrapy.selector import Selector from selenium import webdriver class QQZoneSpider(scrapy.Spider): name = "qq_zone" start_urls = ['http://user.qzone.qq.com/xxxxxx'] allowed_domains = ['user.qzone.qq.com'] def __init__(self): self.driver = webdriver.PhantomJS() def parse(self, response): self.driver.get(response.url) sel = Selector(text=self.driver.page_source) # 爬取数据的代码
Next, you can use XPath or CSS Selector to extract data from the page according to the page structure.
3. Process data and store
In qq_zone_spider.py, we need to define how to process the extracted data. Scrapy provides a project pipeline mechanism for data processing and storage. We can turn on this mechanism and define the project pipeline in the settings.py file.
Add the following code in the settings.py file:
ITEM_PIPELINES = { 'qq_zone.pipelines.QQZonePipeline': 300, } DOWNLOAD_DELAY = 3
Among them, DOWNLOAD_DELAY is the delay time when crawling the page, which can be adjusted as needed.
Then, create a file named "pipelines.py" in the project root directory and define how to process and store the captured data.
import json class QQZonePipeline(object): def __init__(self): self.file = open('qq_zone_data.json', 'w') def process_item(self, item, spider): line = json.dumps(dict(item)) + " " self.file.write(line) return item def close_spider(self, spider): self.file.close()
In the above code, we use the json module to convert the data into json format and then store it in the "qq_zone_data.json" file.
3. Social network analysis
After the QQ space data capture is completed, we can use the NetworkX module in Python to conduct social network analysis.
NetworkX is a Python library for analyzing complex networks. It provides many powerful tools, such as graph visualization, node and edge attribute settings, community discovery, etc. The following shows a simple social network analysis code:
import json import networkx as nx import matplotlib.pyplot as plt G = nx.Graph() with open("qq_zone_data.json", "r") as f: for line in f: data = json.loads(line) uid = data["uid"] friends = data["friends"] for friend in friends: friend_name = friend["name"] friend_id = friend["id"] G.add_edge(uid, friend_id) # 可视化 pos = nx.spring_layout(G) nx.draw_networkx_nodes(G, pos, node_size=20) nx.draw_networkx_edges(G, pos, alpha=0.4) plt.axis('off') plt.show()
In the above code, we first read the captured data into memory and use NetworkX to build an undirected graph, in which each node represents A QQ account, each edge represents a friend relationship between the two QQ accounts.
Then, we use the spring layout algorithm to layout the graphics, and finally use matplotlib for visualization.
4. Summary
This article introduces how to use the Scrapy framework for data capture and NetworkX for simple social network analysis. I believe readers have a deeper understanding of the use of Scrapy, Selenium and NetworkX. Of course, crawling QQ space data is only part of social network analysis, and more in-depth exploration and analysis of the data are required in the future.
The above is the detailed content of Scrapy crawler practice: crawling QQ space data for social network analysis. For more information, please follow other related articles on the PHP Chinese website!

Pythonisbothcompiledandinterpreted.WhenyourunaPythonscript,itisfirstcompiledintobytecode,whichisthenexecutedbythePythonVirtualMachine(PVM).Thishybridapproachallowsforplatform-independentcodebutcanbeslowerthannativemachinecodeexecution.

Python is not strictly line-by-line execution, but is optimized and conditional execution based on the interpreter mechanism. The interpreter converts the code to bytecode, executed by the PVM, and may precompile constant expressions or optimize loops. Understanding these mechanisms helps optimize code and improve efficiency.

There are many methods to connect two lists in Python: 1. Use operators, which are simple but inefficient in large lists; 2. Use extend method, which is efficient but will modify the original list; 3. Use the = operator, which is both efficient and readable; 4. Use itertools.chain function, which is memory efficient but requires additional import; 5. Use list parsing, which is elegant but may be too complex. The selection method should be based on the code context and requirements.

There are many ways to merge Python lists: 1. Use operators, which are simple but not memory efficient for large lists; 2. Use extend method, which is efficient but will modify the original list; 3. Use itertools.chain, which is suitable for large data sets; 4. Use * operator, merge small to medium-sized lists in one line of code; 5. Use numpy.concatenate, which is suitable for large data sets and scenarios with high performance requirements; 6. Use append method, which is suitable for small lists but is inefficient. When selecting a method, you need to consider the list size and application scenarios.

Compiledlanguagesofferspeedandsecurity,whileinterpretedlanguagesprovideeaseofuseandportability.1)CompiledlanguageslikeC arefasterandsecurebuthavelongerdevelopmentcyclesandplatformdependency.2)InterpretedlanguageslikePythonareeasiertouseandmoreportab

In Python, a for loop is used to traverse iterable objects, and a while loop is used to perform operations repeatedly when the condition is satisfied. 1) For loop example: traverse the list and print the elements. 2) While loop example: guess the number game until you guess it right. Mastering cycle principles and optimization techniques can improve code efficiency and reliability.

To concatenate a list into a string, using the join() method in Python is the best choice. 1) Use the join() method to concatenate the list elements into a string, such as ''.join(my_list). 2) For a list containing numbers, convert map(str, numbers) into a string before concatenating. 3) You can use generator expressions for complex formatting, such as ','.join(f'({fruit})'forfruitinfruits). 4) When processing mixed data types, use map(str, mixed_list) to ensure that all elements can be converted into strings. 5) For large lists, use ''.join(large_li

Pythonusesahybridapproach,combiningcompilationtobytecodeandinterpretation.1)Codeiscompiledtoplatform-independentbytecode.2)BytecodeisinterpretedbythePythonVirtualMachine,enhancingefficiencyandportability.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 English version
Recommended: Win version, supports code prompts!

SublimeText3 Mac version
God-level code editing software (SublimeText3)

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),
