search
HomeDatabaseRedisDetailed explanation of concurrency control of distributed transactions implemented by Redis

With the development of Internet applications, distributed systems have become an inevitable trend. In a distributed system, data interaction is required between multiple services, and these data interactions can be viewed as a series of transactions. When multiple services operate on transactions at the same time, concurrency control is required.

Redis is a high-performance key-value database that is widely used in distributed systems. It supports a variety of data structures and commands, including transactions and monitoring, making it a good choice for concurrency control in distributed systems. This article will introduce in detail how Redis implements concurrency control of distributed transactions.

1. Redis transaction

Redis transaction is an atomic operation sequence. These operations can be packaged into a single command and passed to the Redis server for execution in a separate step, which guarantees the atomicity of the transaction. In a Redis transaction, you can use the MULTI command to start the transaction, the EXEC command to submit the transaction, and the DISCARD command to cancel the transaction.

Commands in a Redis transaction can be executed continuously after starting the transaction without sending a request for each command. After the client has executed all commands, it can use the EXEC command to submit commands to the Redis server in batches. If any errors occur during the execution of a transaction, Redis will cancel the transaction and prohibit all modifications. This ensures that all operations in a transaction are executed or none are executed.

2. Redis Monitoring

Redis monitoring is the key to Redis implementing distributed transactions. It uses the WATCH command to monitor one or more keys in the database. In data types such as LIST, SET, ZSET, HASH and STRING, the monitored key must exist. If modifications to these keys occur during monitoring, the transaction will not be successfully committed. During monitoring, the client can use the MULTI command to start another transaction.

For example, the following code uses Redis monitoring:

WATCH balance
balance = GET balance
balance = balance - 10
MULTI
SET balance $balance
EXEC

This code will monitor the key named "balance", use the GET command to obtain data from this key, and then transfer the data Subtract 10. Then use the MULTI command to start the transaction and write the data back to "balance".

If other clients in this transaction also monitor the "balance" key and modify this key before the client executes the MULTI command, then the transaction will fail. If the transaction is successfully submitted, other clients cannot modify the monitored key before all operations included in the transaction are performed in the Redis server.

3. Redis distributed lock

In order to avoid competition and deadlock problems caused by calling Redis monitoring commands on multiple clients at the same time, distributed locks can be used. Redis provides two types of distributed locks: stand-alone locks and cluster locks.

1. Single-machine lock

Single-machine lock is the simplest distributed lock implementation. In a stand-alone lock, you can use the SETNX command to set a key value for locking. For example, the following code uses a stand-alone lock:

SETNX lock_key $current_time

This code will set a value to "lock_key". If this key does not exist before, the setting is successful and 1 is returned. Otherwise, 0 is returned, indicating that the lock failed. During the lock period, other clients cannot modify this key. At this time, the client can perform its own operations. When the client completes the operation, it needs to use the DEL command to release the lock. This will delete "lock_key" and unlock it.

2. Cluster lock

Cluster lock is a more powerful distributed lock implementation. In cluster locks, the Redlock algorithm can be used for multi-node locking. The Redlock algorithm is a distributed lock algorithm based on clock synchronization. In the Redlock algorithm, the client first acquires a lock and uses the current time as the expiration time of the lock. The client also needs to obtain locks from other Redis servers to ensure that this lock is consistent across multiple nodes. During the lock period, clients can perform their own operations. When the client completes the operation, the lock needs to be released. This will remove the lock and remove the lock on all Redis servers at the same time.

4. Summary

In Internet application development, distributed transactions and concurrency control are very important. Redis provides mechanisms such as transactions, monitoring, and distributed locks, making it a good choice for concurrency control in distributed systems. Proficient in these mechanisms can help developers better design and develop distributed systems, and solve distributed transaction and concurrency control issues.

The above is the detailed content of Detailed explanation of concurrency control of distributed transactions implemented by Redis. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Redis: Beyond SQL - The NoSQL PerspectiveRedis: Beyond SQL - The NoSQL PerspectiveMay 08, 2025 am 12:25 AM

Redis goes beyond SQL databases because of its high performance and flexibility. 1) Redis achieves extremely fast read and write speed through memory storage. 2) It supports a variety of data structures, such as lists and collections, suitable for complex data processing. 3) Single-threaded model simplifies development, but high concurrency may become a bottleneck.

Redis: A Comparison to Traditional Database ServersRedis: A Comparison to Traditional Database ServersMay 07, 2025 am 12:09 AM

Redis is superior to traditional databases in high concurrency and low latency scenarios, but is not suitable for complex queries and transaction processing. 1.Redis uses memory storage, fast read and write speed, suitable for high concurrency and low latency requirements. 2. Traditional databases are based on disk, support complex queries and transaction processing, and have strong data consistency and persistence. 3. Redis is suitable as a supplement or substitute for traditional databases, but it needs to be selected according to specific business needs.

Redis: Introduction to a Powerful In-Memory Data StoreRedis: Introduction to a Powerful In-Memory Data StoreMay 06, 2025 am 12:08 AM

Redisisahigh-performancein-memorydatastructurestorethatexcelsinspeedandversatility.1)Itsupportsvariousdatastructureslikestrings,lists,andsets.2)Redisisanin-memorydatabasewithpersistenceoptions,ensuringfastperformanceanddatasafety.3)Itoffersatomicoper

Is Redis Primarily a Database?Is Redis Primarily a Database?May 05, 2025 am 12:07 AM

Redis is primarily a database, but it is more than just a database. 1. As a database, Redis supports persistence and is suitable for high-performance needs. 2. As a cache, Redis improves application response speed. 3. As a message broker, Redis supports publish-subscribe mode, suitable for real-time communication.

Redis: Database, Server, or Something Else?Redis: Database, Server, or Something Else?May 04, 2025 am 12:08 AM

Redisisamultifacetedtoolthatservesasadatabase,server,andmore.Itfunctionsasanin-memorydatastructurestore,supportsvariousdatastructures,andcanbeusedasacache,messagebroker,sessionstorage,andfordistributedlocking.

Redis: Unveiling Its Purpose and Key ApplicationsRedis: Unveiling Its Purpose and Key ApplicationsMay 03, 2025 am 12:11 AM

Redisisanopen-source,in-memorydatastructurestoreusedasadatabase,cache,andmessagebroker,excellinginspeedandversatility.Itiswidelyusedforcaching,real-timeanalytics,sessionmanagement,andleaderboardsduetoitssupportforvariousdatastructuresandfastdataacces

Redis: A Guide to Key-Value Data StoresRedis: A Guide to Key-Value Data StoresMay 02, 2025 am 12:10 AM

Redis is an open source memory data structure storage used as a database, cache and message broker, suitable for scenarios where fast response and high concurrency are required. 1.Redis uses memory to store data and provides microsecond read and write speed. 2. It supports a variety of data structures, such as strings, lists, collections, etc. 3. Redis realizes data persistence through RDB and AOF mechanisms. 4. Use single-threaded model and multiplexing technology to handle requests efficiently. 5. Performance optimization strategies include LRU algorithm and cluster mode.

Redis: Caching, Session Management, and MoreRedis: Caching, Session Management, and MoreMay 01, 2025 am 12:03 AM

Redis's functions mainly include cache, session management and other functions: 1) The cache function stores data through memory to improve reading speed, and is suitable for high-frequency access scenarios such as e-commerce websites; 2) The session management function shares session data in a distributed system and automatically cleans it through an expiration time mechanism; 3) Other functions such as publish-subscribe mode, distributed locks and counters, suitable for real-time message push and multi-threaded systems and other scenarios.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SecLists

SecLists

SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Powerful PHP integrated development environment

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version