


With the continuous development of Internet technology and the continuous expansion of application scenarios, real-time caching technology has increasingly become an essential skill for Internet companies. As a method of real-time caching technology, message queue is increasingly favored by developers in practical applications. This article mainly introduces how to establish real-time caching technology based on Kafka message queue in Golang.
What is Kafka message queue?
Kafka is a distributed messaging system developed by LinkedIn that can handle tens of millions of messages. It has the characteristics of high throughput, low latency, durability, and high reliability. Kafka has three main components: producers, consumers and topics. Among them, producers and consumers are the core parts of Kafka.
The producer sends messages to the specified topic, and can also specify the partition and key (Key). Consumers receive corresponding messages from the topic. In Kafka, producers and consumers are independent and have no dependencies on each other. They only interact with each other by sharing the same topic. This architecture implements distributed message delivery and effectively solves message queue requirements in various business scenarios.
The combination of Golang and Kafka
Golang is an efficient programming language that has become popular in recent years. With its high concurrency, high performance and other characteristics, it is increasingly widely used. It has the inherent advantage of combining with message queues, because in Golang, the number of goroutines has a one-to-one relationship with the number of kernel threads, which means that Golang can handle large-scale concurrent tasks efficiently and smoothly, while Kafka can Distribute various messages to different broker nodes according to customizable partition rules to achieve horizontal expansion.
By using the third-party Kafka library sarama in Golang, we can easily implement interaction with Kafka. The specific implementation steps are as follows:
1. Introduce the sarama library into the Golang project:
import "github.com/Shopify/sarama"
2. Create a message sender (Producer) instance:
config := sarama.NewConfig() config.Producer.Return.Successes = true producer, err := sarama.NewAsyncProducer([]string{"localhost:9092"}, config)
Among them, NewConfig() is used to create a new configuration file instance. Return.Successes indicates that success information will be returned when each message is sent successfully. NewAsyncProducer() is used to create a producer instance. The string array in the parameter represents the Broker in the Kafka cluster. The IP address and port number of the node.
3. Send a message:
msg := &sarama.ProducerMessage{ Topic: "test-topic", Value: sarama.StringEncoder("hello world"), } producer.Input() <- msg
Among them, ProducerMessage represents the message structure, Topic represents the topic to which the message belongs, and Value represents the message content.
4. Create a message consumer (Consumer) instance:
config := sarama.NewConfig() config.Consumer.Return.Errors = true consumer, err := sarama.NewConsumer([]string{"localhost:9092"}, config)
Among them, NewConfig() is used to create a new configuration file instance, and Return.Errors means that each time a message is consumed, Returns an error message of consumption failure. NewConsumer() is used to create a consumer instance.
5. Consume messages:
partitionConsumer, err := consumer.ConsumePartition("test-topic", 0, sarama.OffsetNewest) for msg := range partitionConsumer.Messages() { fmt.Printf("Consumed message: %s ", string(msg.Value)) partitionConsumer.MarkOffset(msg, "") // 确认消息已被消费 }
Among them, ConsumePartition() is used to specify the topic, partition and consumption location (latest message or oldest message) of consumption, and Messages() is used to obtain from Messages consumed in the topic. After consuming a message, we need to use the MarkOffset() method to confirm that the message has been consumed.
Kafka real-time cache implementation
In Golang, it is very convenient to establish a real-time cache through the Kafka message queue. We can create a cache management module in the project, convert the cache content into the corresponding message structure according to actual needs, send the message to the specified topic in the Kafka cluster through the producer, and wait for the consumer to consume the message from the topic and proceed. deal with.
The following are the specific implementation steps:
1. Define a cache structure and a cache variable in the project:
type Cache struct { Key string Value interface{} } var cache []Cache
Among them, Key represents the cache key (Key) , Value represents the cached value (Value).
2. Convert the cache into the corresponding message structure:
type Message struct { Operation string // 操作类型(Add/Delete/Update) Cache Cache // 缓存内容 } func generateMessage(operation string, cache Cache) Message { return Message{ Operation: operation, Cache: cache, } }
Among them, Message represents the message structure, Operation represents the cache operation type, and generateMessage() is used to return a Message instance.
3. Write a producer and send the cached content as a message to the specified topic:
func producer(messages chan *sarama.ProducerMessage) { config := sarama.NewConfig() config.Producer.Return.Successes = true producer, err := sarama.NewAsyncProducer([]string{"localhost:9092"}, config) if err != nil { panic(err) } for { select { case msg := <-messages: producer.Input() <- msg } } } func pushMessage(operation string, cache Cache, messages chan *sarama.ProducerMessage) { msg := sarama.ProducerMessage{ Topic: "cache-topic", Value: sarama.StringEncoder(generateMessage(operation, cache)), } messages <- &msg }
Among them, producer() is used to create a producer instance and wait for the message incoming from the pipeline to be sent. , pushMessage() is used to convert the cached content into a Message instance and send it to the specified topic using the producer.
4. Write a consumer, listen to the specified topic and perform corresponding operations when the message arrives:
func consumer() { config := sarama.NewConfig() config.Consumer.Return.Errors = true consumer, err := sarama.NewConsumer([]string{"localhost:9092"}, config) if err != nil { panic(err) } partitionConsumer, err := consumer.ConsumePartition("cache-topic", 0, sarama.OffsetNewest) if err != nil { panic(err) } for msg := range partitionConsumer.Messages() { var message Message err := json.Unmarshal(msg.Value, &message) if err != nil { fmt.Println("Failed to unmarshal message: ", err.Error()) continue } switch message.Operation { case "Add": cache = append(cache, message.Cache) case "Delete": for i, c := range cache { if c.Key == message.Cache.Key { cache = append(cache[:i], cache[i+1:]...) break } } case "Update": for i, c := range cache { if c.Key == message.Cache.Key { cache[i] = message.Cache break } } } partitionConsumer.MarkOffset(msg, "") // 确认消息已被消费 } }
Among them, consumer() is used to create a consumer instance and listen to the specified topic, use The json.Unmarshal() function parses the Value field of the message into a Message structure, and then performs corresponding caching operations based on the Operation field. After consuming a message, we need to use the MarkOffset() method to confirm that the message has been consumed.
Through the above steps, we have successfully used the Kafka library sarama in Golang to establish real-time caching technology based on Kafka message queue. In practical applications, we can choose different Kafka cluster configurations and partition rules according to actual needs to flexibly cope with various business scenarios.
The above is the detailed content of Establish real-time caching technology based on Kafka message queue in Golang.. For more information, please follow other related articles on the PHP Chinese website!

go语言有缩进。在go语言中,缩进直接使用gofmt工具格式化即可(gofmt使用tab进行缩进);gofmt工具会以标准样式的缩进和垂直对齐方式对源代码进行格式化,甚至必要情况下注释也会重新格式化。

go语言叫go的原因:想表达这门语言的运行速度、开发速度、学习速度(develop)都像gopher一样快。gopher是一种生活在加拿大的小动物,go的吉祥物就是这个小动物,它的中文名叫做囊地鼠,它们最大的特点就是挖洞速度特别快,当然可能不止是挖洞啦。

本篇文章带大家了解一下golang 的几种常用的基本数据类型,如整型,浮点型,字符,字符串,布尔型等,并介绍了一些常用的类型转换操作。

是,TiDB采用go语言编写。TiDB是一个分布式NewSQL数据库;它支持水平弹性扩展、ACID事务、标准SQL、MySQL语法和MySQL协议,具有数据强一致的高可用特性。TiDB架构中的PD储存了集群的元信息,如key在哪个TiKV节点;PD还负责集群的负载均衡以及数据分片等。PD通过内嵌etcd来支持数据分布和容错;PD采用go语言编写。

go语言需要编译。Go语言是编译型的静态语言,是一门需要编译才能运行的编程语言,也就说Go语言程序在运行之前需要通过编译器生成二进制机器码(二进制的可执行文件),随后二进制文件才能在目标机器上运行。

在写 Go 的过程中经常对比这两种语言的特性,踩了不少坑,也发现了不少有意思的地方,下面本篇就来聊聊 Go 自带的 HttpClient 的超时机制,希望对大家有所帮助。

删除map元素的两种方法:1、使用delete()函数从map中删除指定键值对,语法“delete(map, 键名)”;2、重新创建一个新的map对象,可以清空map中的所有元素,语法“var mapname map[keytype]valuetype”。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

SublimeText3 Chinese version
Chinese version, very easy to use

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

SublimeText3 Linux new version
SublimeText3 Linux latest version